
I RIEtTEEEG^

Learning

Apple LogP
Wth

by
Daniel Watt

Learning With Apple Logo

Learning With Apple Logo

by Daniel Watt
Cartoon Illustrations by Paul D. Trap

McGraw-Hill Book Company

New York St. Louis San Francisco Auckland
Bogota Hamburg Johannesburg London Madrid

Mexico Montreal New Delhi Panama Paris

Sao Paulo Singapore Sydney Tokyo Toronto

The author of the programs provided with this book has care¬
fully reviewed them to ensure their performance in accordance
with the specifications described in the book. Neither the au¬
thor nor McGraw-Hilly Inc.y howevery makes any warranties
concerning the programsy or for the consequences of any such
errors. The programs are the sole property of the author and
have been registered with the United States Copyright Office.

Library of Congress Cataloging in Publication Data

Watt, Daniel.
Learning with Apple Logo.

Includes index.
1. Apple computer—Programming. 2. LOGO (Computer

program language) I. Title.
QA76.8.A66W38 1984 001.64'24 83-26828
ISBN 0-07-068571-1

Copyright © 1984 by McGraw-Hill, Inc. All rights reserved.
Printed in the United States of America. Except as permitted
under the United States Copyright Act of 1976, no part of this
publication may be reproduced or distributed in any form or by
any means, or stored in a data base or retrieval system, without
the prior written permission of the publisher.

1234567890 HAL/HAL 8987654

ISBN 0-07-DbfiS71-l

Cover design by Ellen Klempner-Beguin
Cover illustration by Connie Porter

The editors for this book were Stephen G. Guty, Bruce Roberts, and Esther Gelatt, and the
production supervisor was Teresa F. Leaden.
It was set in Times Roman by Byrd Data Imaging.

Printed and bound by Halliday Lithograph.

Table of Contents

Acknowledgments ix

Chapter 0 Before You Start Reading This Book.1
0.1 Who This Book Is For.1
0.2 How to Use This Book...2
0.3 Using the LWAL Procedures Disk.7
0.4 What Is Logo?.8

Chapter 1 Getting Started.10
1.1 Loading Logo from an Apple Logo Language Disk 11
1.2 Using the Apple Keyboard.13
1.3 Typing Logo Commands.15
1.4 Meet the Turtle.18

Chapter 2 The World of the Turtle.22
2.1 Basic Turtle Commands.23
2.2 Exploring the Turtle’s World.25
2.3 Drawing Shapes with the Turtle.30
2.4 Living Color.35
2.5 Designs with Circles and Arcs.36
2.6 More Turtle Commands ...39

Chapter 3 Special Turtle Activities: SHOOT and OUlCKDRAW 46
3.1 SHOOT: An Interactive Turtle Game.47
3.2 OUlCKDRAW: Drawing with an “Instant” Turtle . .52

Chapter 4 Teaching the Computer.56
4.1 Teaching the Computer How to BOX.57
4.2 Using the Logo Screen Editor.66
4.3 Saving Procedures on a Logo Work Disk.69
4.4 Printing Procedures and Pictures with a Printer 74

Chapter 5 Turtle Projects 1: Designs.76
5.1 Procedures and Subprocedures.77
5.2 Regular Shapes.81
5.3 Using the REPEAT Command.83
5.4 Using Recursion.88
5.5 Designs with Circles and Arcs.94

Chapter 6 Turtle Projects 2: Drawings.102
6.1 Drawing a Truck.104
6.2 Drawing a Person.109
6.3 Drawing a Flower.116
6.4 More Ideas for Turtle Drawing Projects.118

Chapter 7 Variables.122
7.1 Inputs that Change the Size of a Design.123

7.2 Inputs that Change the Shape of a Design.129
7.3 Procedures with Two or More Inputs.131
7.4 Subprocedures with Variables.133
7.5 Making a Design “Grow” and “Stop”.138
7.6 More Procedures that Grow and Stop.143

Chapter 8 POLY and Its Relatives.150
8.1 POLY.151
8.2 Making POLY Stop.154
8.3 Thinking More about Stop Rules.157
8.4 Polyspirals.159
8.5 Inspirals.164
8.6 More POLY Relatives.168

Chapter 9 Conversations with the Computer:
Activities with Numbers, Words, and Lists.176

9.1 Numbers, Words, and Lists.177
9.2 Commands for Using Words and Lists.179
9.3 Numbers, Words, and Lists as Variables.184
9.4 Questions and Answers.191
9.5 GUESSNUMBER.193
9.6 MATHQUIZ.197

Chapter 10 SHOOT: An Interactive Turtle Game.204
10.1 New Logo Commands and Tool Procedures Used in

the SHOOT Game.206
10.2 How the SHOOT Game Works.209
10.3 Ways to Improve the SHOOT Game.213
10.4 Making the Game More Interesting.214
10.5 Making the SHOOT Game Harder.215
10.6 Making the Game Easier.218
10.7 Adding Instructions and Changing Messages.220
10.8 Putting All the Options Together.221

Chapter 11 QUICKDRAW: A Turtle Drawing Activity for Young
Children.224

11.1 How the QUICKDRAW Procedures Work.225
11.2 Making QUICKDRAW Remember Its Moves.226
11.3 Improving QUICKDRAW.230

Chapter 12 Animating the Turtle: Building a Racetrack Game . 236
12.1 Animating the Turtle.237
12.2 Improving the Animation.240
12.3 Animating the Turtle Using Game Paddles.241
12.4 Racing with the Turtle, Part 1.243
12.5 Racing with the Turtle, Part II.245
12.6 Turtle RACE Variations.250

Chapter 13 Meet the Poet.256
13.1 Sentences.258
13.2 Making Sentences Make Sense.262
13.3 POET.263
13.4 More Explorations with Language.265

Chapter 14 How the Special Tool Procedures Work.268
14.1 Circles and Arcs.270
14.2 CCIRCLE.272
14.3 Boxes.274
14.4 DISTANCE.'•.276
14.5 READKEY.277
14.6 PICKRANDOM and PICK.278
14.7 READNUMBER.281
14.8 PRINTSCREEN.283

Appendix I Creating Your Own LWAL Procedures Disk.286
1.1 CIRCLES.287
1.2 CCIRCLE.287
1.3 BOXES.288
1.4 DISTANCE.289
1.5 READKEY.289
1.6 PICKRANDOM.289
1.7 READNUMBER.290
1.8 PRINTSCREEN.290
1.9 GUESSNUMBER.292
1.10 MATHQUIZ.292
1.11 SHOOT.294
1.12 QUICKDRAW.295
1.13 RACE.296
1.14 POET.298

Appendix II Care and Management of Disks and Files.301
II. 1 Initializing Logo Work Disks.301
11.2 Copying Logo Work Disks.302
11.3 Copying Files from One Disk to Another.302
11.4 Updating Files .303
11.5 Saving Some of the Procedures in a File.303
11.6 Burying Packages of Procedures.305
11.7 Modifying the Startup File.307
11.8 Some Commonsense Tips for Caring for Disks-308

Appendix III Reference List of Logo Commands Used in This
Book.309

111.1 Turtle Commands.309
111.2 Editing and Filing Commands.310
111.3 Input, Output, and Printing Commands.310
111.4 Arithmetic and Number Commands.310
111.5 Word, List, and Variable Commands.311
111.6 Procedure Control and Conditional Commands-311
111.7 Miscellaneous Commands.311
111.8 Special Keys Used in Logo Command Mode.312
111.9 Special Keys in Edit Mode.312

Index 313

Acknowledgments

I want to acknowledge my debts to the many people whose ideas have

been incorporated in this book and whose efforts have helped make it a

reality.
First and foremost, I want to acknowledge the contributions made by

Molly Watt. Virtually every idea in the book has been discussed thoroughly

with her and has been strengthened and deepened by her suggestions. Many

of the ideas had their first trial use in her classes for teachers at Lesley

College and Keene State College and for children at Computer Camps

International. Finally, she has had the unenviable experience of having to

live with me during the final months of exhausting and all-consuming effort

needed to make Learning with Apple Logo a reality. She knows how

grateful I am for her support during those months.

The ideas in the book go back to my involvement in the late 1960s with

Elementary Science Study, a federally supported curriculum development

project that made science a real experience for thousands of elementary

school children and teachers. It was through interactions with colleagues in

that effort and during my seven years of teaching elementary school in

Brookline, Massachusetts, that my educational philosophy and practices

were shaped and matured.
It was not until 1976, however, when I was welcomed into the MIT

Logo Group, that I began to comprehend how the ideals and educational

values that had been nurtured through the sixties and seventies could

become reality for thousands, possibly millions of people via

microcomputers, the Logo language, and the ideas and inspiration of

Seymour Papert. Although Logo and the culture that has grown up around

it are the work of a large group of people, there are good reasons why

Seymour Papert’s name is so closely identified with it. Seymour was both

the chief theoretician and the chief practitioner of Logo. He gathered the

research teams and obtained the funding necessary to create the hardware,

software, and philosophy of teaching and learning that have made Logo a

reality. Working with Seymour Papert was one of the most fortunate and

rewarding experiences in my life.

Many others were part of the Logo group during the five years I was

associated with it. My closest associations were with those who were

involved with me on the two Brookline Logo Projects between 1977 and

1981. Many of the ideas that found their way into this book came from

those people: Hal Abelson, Jeanne Bamberger, Andy diSessa, Greg

Gargarian, Ellen Hildreth, Danny Hillis, Bob Lawler, Margaret Minsky,

Seymour Papert, Sylvia Weir, and Ursula Wolz. Others who made major

contributions to the Logo culture at MIT and to my thinking were Howard

Austin, John Berlow, Paul Goldenberg, Ginny Grammer, Marvin Minsky,

Cynthia Solomon, and Jose Valente.
Outside of MIT, I want to thank the hundreds of 9- through 14-year-old

1
students at Lincoln School in Brookline, Massachusetts, whose ideas and

experiences form the basis for most of the projects in the book. It was theii

experiences, efforts, and enthusiasm that transformed Logo from an ivory

tower educational philosophy to a living reality for me. Then there were th(

teachers and administrators who nurtured a Logo hothouse at Lincoln

School for four years: Joan Aronson, Gerry Cote, Lisa Hirsch, Bob Lewis,

Mary Parkins, Florence Regolino, Ellie Shacter, and Robin Welch, and

Brookline’s Superintendent of Schools, Bob Sperber, who believed in the

viability of Logo when many people thought it was just a pipe dream.

There are some whose ideas have been directly incorporated in the

book, and who need to be acknowledged specifically. Many of the turtle

geometry projects and design ideas used in Chapters 5, 6, and 7 are based

on ones that were originally collected and made available by Ellen Hildreth.

Others, especially those in Chapter 8, came from the book Turtle Geometry

by Hal Abelson and Andy diSessa, published by the MIT Press. Although

programs like QUICKDRAW, used in Chapters 3 and 11, were used by man}

people at MIT, I was first introduced to the idea by Paul Goldenberg.

Similarly, my first exposure to a SHOOT game like the one in Chapters 3
and 10 was to the one developed by Bob Lawler for his own children. I

learned the idea of animating the turtle from Danny Hillis, and it was

elaborated into a variety of games by students at Lincoln School. The

POET procedures were borrowed from a BASIC program published by

Lloyd Prentice in Classroom Computer News, but the idea of sentence

pattern procedures goes way back to the earliest Logo experiments, before

there ever was a turtle. Finally, I want to single out one student, David

Libby, a sixth grader in 1978, who created the design that was used for the

cover of this book.

As important as the ideas that went into Learning With Apple Logo

was the work of those who nurtured, edited, designed, and produced it. It

was a great privilege to work with the editorial and production team

assembled by Ed Kelly at Byte Books. Ed Kelly, as publisher, nourished

the book from the time it was barely a gleam in my eye, until it was out th(

door, and, not so incidentally, contributed the title. Learning With Apple

Logo, Ellen Klempner’s inspiration as designer and production coordinator

has deeply influenced it, as has the thoughtful work of Bruce Roberts as

editor. In addition to all her other support, Molly Watt served as

“translator” in adapting Learning With Apple Logo from its earlier version

Learning With Logo. Peggy McCauley as production editor also played a

key role in making this book a reality. Most important of all was the

synergistic way we all worked together. I only hope that the spirit with

which the staff of Byte Books lovingly produced Learning With Apple Logc

will be reflected in the satisfaction of those who read it.

Others made important contributions. I don’t think I can overestimate

the importance of Paul Trap’s cartoons. His wit and intelligence in creating

visual explanations of how Logo works have played a vital role in making

Logo come alive. Similarly, Tim Taussig’s cover design and Connie Porter’*

execution of it have been critical ingredients of the whole that has finally

emerged. Finally, I want to acknowledge the practical help of Art Scottin,

President of Orange Micro of Anaheim, California, who loaned me an

Epson MX-80 printer and a Grappler interface card which were used to

make the graphic illustrations that are essential to the book. And I’m

grateful to my daughter, Kristin Gustafson, who spent part of her summer

on the tedious task of printing them out, one at a time.

Somehow a book seems to end right back where it started and so do

these acknowledgments, with Molly. Without her love, care, and intelligent,

critical support, this book could never have come to be.

Daniel Watt

Antrim, New Hampshire

Before You Start Reading This Book / 1

Before You Start Reading
This Book

Learning With Apple Logo is designed to help you learn to use a com¬

puter. In this chapter I will tell you something about how to use this

book. It may seem strange for a book to start with Chapter 0. It may also

seem strange to read a chapter about a book, before you start reading the

book itself. If you want to get started with Logo right away, without think¬

ing too much about it, go right ahead and turn to Chapter 1, “Getting Start¬

ed.” You won’t miss much, and you can always come back to this chapter

later.
On the other hand, if you like to know something about what you’re

getting into before you start doing it, read this chapter first.

Learning With Apple Logo is for anyone who wants to learn Logo, a

modern computer language that makes it fun to program a computer. Logo

is great for kids. It makes it easy to get started and simple to make a com¬

puter do exciting things. Logo is also great for adults. Once you learn Logo,

you can make the computer do some wonderfully difficult things—many

things that you can’t easily do with other computer languages—in a way

that is a lot simpler than you’d expect. Logo is for people of all ages.

Learning With Apple Logo is designed for kids and adults to use to¬

gether, helping each other along. Very young children—even as young as

four or five—can use the activities in Chapter 3 with the help of a parent, a

teacher, or an older friend. People of about 10 or 11 should be able to read

most of Chapters 1 through 6 without much help. Slightly older people

should be able to read the rest of the book without much help. Most adults

should be able to read the whole book by themselves, too, but unless they

have unusually adventurous and playful spirits (for adults, that is), they will

probably enjoy it much more if they use it with someone younger.

Teachers or parents may read Learning With Apple Logo and use parts

of it to help learners who may not read the rest of the book at all. If you are

a teacher or parent who reads the book as a way of passing ideas on to your

children, I urge you to think of yourself as a learner first. Try as many of

the activities, projects and explorations as you possibly can so you’ll have

an idea of what the learners you are helping may be experiencing.

I really know only one good way to help someone learn Logo. I sit

down with a friend at a computer, make suggestions, ask and answer ques¬

tions, and watch my friend work. As I watch, I try to notice any particular

difficulties the person is having as well as any special things that my friend

really likes and is good at. As I help someone learn, I use what I know

about how other people have learned to help me decide how I can be most

helpful to this person. Sometimes the best thing I can do is to go away and

let my friend work on his own for a while. At other times I try to work very

closely with someone, showing her how to do something new or working

2 / Before You Start Reading This Book

Section 0.2.
How to Use This Book

What’s in the Book?

Part I

with her on a problem that has both of us stumped. Very, very often, I

learn something new myself when I help someone solve a problem or just

watch someone learn.

When I decided to write a book to help someone learn with Logo, I

knew that the hardest thing would be to put everything down in print, in

definite words, in fixed order. With this book I want to help people learn

together and have the same kinds of experiences that have made learning

and teaching with Logo so exciting for me.

This book is designed to be used directly with Apple Logo, sold by

Apple Computer, Inc. If you have Apple Logo, you can type in all the com¬

mands and examples in the book exactly as they are written.

Most activities in the book can be carried out with any version of

Logo. However, you may need to make minor changes as you work your

way through the book using other versions of Logo. If you have an Apple

computer, and are using either Terrapin Logo or Krell Logo, you should get

the first edition of this book, called Learning With Logo. That edition also

has an appendix for use with TI Logo.

Other editions of the book are being made for Commodore Logo, TI

Logo, and Atari Logo. Please look for the edition that goes with your ver¬

sion of Logo. Your bookstore or computer store may be able to help you

find it.

Learning With Apple Logo is divided into three parts. Part I, including

Chapters 1 through 6, can be read by anyone from the age of ten or eleven.

Part II, Chapters 7-9, can be read by eleven- to thirteen-year-olds who have

finished Part I. Part III, Chapters 10-14, can be read by people from about

the age of thirteen or fourteen on, or by younger readers with an adult help¬

ing them.

Part I gets people started with Logo and can keep some people busy

for a long time. Chapters 1 and 2 introduce the computer keyboard and the

Logo turtle, a robot that moves around and draws pictures on a TV screen.

Chapter 3 shows how to use two preprogrammed Logo activities—a game

called SHOOT that helps people learn how to explore the world of the tur¬

tle, and QUICKDRAW, which allows someone to make turtle designs, just

by pressing keys on the keyboard. Chapter 4 tells how to teach the comput¬

er new commands, called procedures, how to use the Logo screen editor,

and how to save procedures on your Logo work disk. Chapter 4 is a long,

complicated chapter that you will probably want to come back to as you

read the rest of the book. Chapters 5 and 6 show how to do dozens of turtle

designs and drawing projects, most of which were taken from the work of 9-

to 11-year-old learners.

Before You Start Reading This Book / 3

Part II Part II introduces procedures with inputs and tells how Logo uses vari¬

ables to keep track of information. Chapter 7 tells how to draw turtle

shapes with variable sizes and angles, how to make shapes grow or shrink,

and how to use conditional commands to make the computer stop doing

something. Chapter 8 introduces the POLY procedure with its many varia¬

tions and shows how to make exciting mathematical designs with the turtle.

Chapter 9 explains how to have conversations with the computer and how

to make question-and-answer games and quizzes.

Part III Part III includes four big projects that can start simple and grow as

complicated as you want to make them. In Chapters 10 and 11 you’ll learn

how to create the SHOOT and OUlCKDRAW projects that were used as ac¬

tivities in Chapter 3. Chapter 12 shows how you can make the turtle come

alive and keep it moving around the screen by pressing keys on the key¬

board. It also shows how to create an action game using a moving turtle as

if it were a car racing around a track. Chapter 13 shows how to turn the

computer into a poet that creates sentences, poems, and stories using words

and patterns that you invent. Finally, Chapter 14 explains the workings of

the tool procedures that are used throughout the book.

By the time you finish Part III, you will be ready to tackle just about

any Logo project on your own!

Appendices A series of appendices at the back of the book gives some useful infor¬

mation that you will need at different times while using the book.

Appendix I tells you how to create your own LWAL Procedures Disk.

It contains listings of all the tool procedures and many of the sample pro¬

grams used in the book.
Appendix II tells how to initialize and copy Logo work disks.

Appendix III is a list of Apple Logo commands that you can use as a

reference while you work with Logo.

Cartoon Characters As you read the book, certain special cartoon characters will help you

understand some of the trickier ideas. Soon you will become very familiar

with them, but I’d like to introduce them to you now.

4 / Before You Start Reading This Book

1

Figure 0.1: The turtle.

The turtle is used to represent the Logo turtle. Sometimes the turtle

also represents a person reading this book.

Figure 0.2: The Logo wizard.

This is Logo, a “wizard” inside the computer who tries to understand

and carry out your commands. Logo is shown as a wizard because he has

all the powers of the computer. Because Logo wants to help you make the

computer do things, he is shown as being very friendly. Because Logo is

not very smart—he depends entirely on you to tell him what to do—he is

shown as being easily confused. In fact, he is rather dumb, in spite of all his

powers.

I

Before You Start Reading This Book / 5

Figure 0.3: Two of Logo’s helpers.

These are some of Logo’s helpers. They are shown as robots because

each one of them does the same job, over and over again, unless you

change its instructions. Robots with rectangular heads like FORWARD or

RIGHT represent built-in Logo commands, called primitives. Robots with

diamond-shaped heads like STAR160 represent procedures—commands that

you teach the computer. Whenever you teach the computer a new com¬

mand, you create a new helper that can do its own special thing to help

Logo help you.

Special Sections of the Book

HTFAU

As you read the book, certain sections are marked with special sym¬

bols to help you use the book more easily. These sections are repeated all

though the book, along with their symbols.

This symbol represents a pitfall, a kind of trap that many people fall

into when they learn Logo. When you see this pitfall symbol, it will warn

you of a possible trap, help you avoid a trap, or help you get out of one if

you have already fallen in.
Don’t be afraid of traps. They are almost impossible to avoid complete¬

ly, and they can be a lot of fun. Think of a trap as part of an adventure the

part that you’ll tell people about over dinner in years to come.

A mistake in a computer program is sometimes called a hug, and fixing

such a mistake is called debugging. So you can think of these pitfall sym¬

bols as a guide to possible bugs, as well as a sign of traps to be avoided.

This Book

Fmm IMA

EXHMATM

mLKftjs mt

Other Materials You Will
Need

This symbol represents a powerful idea, an idea which makes you more

powerful when you understand it and use it. The symbol calls your atten¬

tion to ideas that will help you think more clearly and solve problems with

the computer more easily. Some of these ideas will be powerful for you

even when you are not using a computer.

This symbol means exploration. After you have learned how to do

something new with the computer, you are ready to explore and make dis¬

coveries on your own. Explorations are not usually explained very well. Af¬

ter all, if you already knew the way, you’d miss the fun of exploring. Some

explorations are hard and some are easy. You can try as few or as many as

you like. No answers are given, except the ones that you discover yourself

by using the computer.

This helper’s hint symbol shows two learners, an older and a younger

one, helping each other learn by shining a brighter light on a subject. These

hints are for someone who wants to help someone else learn Logo. They

may explain difficult points more fully, tell more about how to avoid com¬

mon pitfalls, or just give a practical suggestion for helping someone learn

Logo.
Helper’s hints can also be used if you want help understanding more

about what you are learning with Logo. In other words, you can use them

to help yourself think more deeply about what you are learning.

First, you will need an Apple Logo Language Disk from Apple Com¬

puter Inc. Of course you will also need an Apple II or He computer with a

sufficient amount of memory.

As you use the computer to learn Logo, you will need a Logo work

disk that you can use to save your own procedures as you work.

I suggest that you keep a regular Logo journal in which you write down

what you do every day. In your journal you can take notes on what you

have done, write down ideas for new projects, and keep track of any ques¬

tions about things you don’t understand. Another good use of your journal

is to keep copies of all procedures, along with lists of procedure names and

Before You Start Reading This Book / 7

Section 0.3.
Using the LWAL
Procedures Disk

Obtaining the LWAL
Procedures Disk

what each procedure does. If you have a printer attached to your computer

this can be done very easily—just print out your procedures on the printer

and tape the information into your journal.

Another useful kind of information to keep in your journal is a list of

bugs (or mistakes) that you have encountered and a record of whether you

have been able to debug them or not. If you haven’t been able to solve a

particular bug, perhaps someone else can help you later. If you have solved

a particular bug, by writing it down you may remember it and be able to

help someone else at a later time. Even if you don’t use your journal very

often, it’s a good idea to keep it near the computer just for those special

times when you do want it.
Finally, when you use this book you will need a special disk of Logo

procedures called the LWAL Procedures Disk. This disk is described in the

next section.

This book is designed to be used with a preprogrammed disk called the

LWAL Procedures Disk (LWAL is short for “Learning With Apple Logo’’).

The disk has several purposes. First, it contains a number of tool pro¬

cedures that can be used just as if they were built-in Logo commands. For

example, circle and arc procedures are used in Chapters 2, 5, and 6, as well

as in later chapters. Procedures to print pictures on a printer are needed for

Chapter 4 and throughout the rest of the book. Other tools are needed for

the projects in Chapters 9 through 13.

Second, the LWAL Procedures Disk contains sample procedures for

the long projects in Chapters 9-13. Of course, you could type in the proce¬

dures as you go along, as you have to do with most computer instruction

books. My aim is to help you understand the procedures, and the first step

in understanding them is using them and seeing what they do. I think it best

to allow you to use the procedures first, without wasting a lot of time typing

them in (and having to debug many typing errors along the way). When you

begin to modify the procedures you will have to type in all the changes

yourself, but you will know by that time what the procedure does and how

it works.
Third, there are two preprogrammed Logo activities, SHOOT and

QUICKDRAW, introduced in Chapter 3. These activities are especially use¬

ful for very young learners and for Logo beginners. There is no way to car¬

ry out these activities without using the SHOOT and QUICKDRAW proce¬

dures from the LWAL Procedures Disk.

Many of the other projects in Chapters 9-13 can also be used by people

long before they are ready to understand the procedures themselves. The

games, quizzes and activities of these later chapters can give beginning

Logo learners a very different sense of what is possible with Logo and of

where their learning experiences may be heading.

Because bookstores don’t like to sell books with disks in them, and be¬

cause this book would cost a lot more if it came with a disk, the book and

the disk are being sold separately. It is essential that you have a copy of the

8 / Before You Start Reading This Book

Section 0.4.

What Is Logo?

LWAL Procedures Disk when you use this book, and you can get the disk

in one of three ways:

1. You can order the disk for $15.95 including postage. Use the tear-out

order form at the back of the book and send a check made out to Cre¬

ative Publications, Inc. to: Creative Publications, Inc., PO Box 10328,

Palo Alto, CA 94303. Be sure to indicate that you are using Apple Logo

when ordering.

2. You can copy the procedures from Appendix I, “Making Your Own

LWAL Procedures Disk.” Although this may sound like the easiest

way to obtain the LWAL Procedures Disk, you may find that it is difii-

cult to copy a set of Logo procedures accurately unless you know

enough Logo to understand how the procedures work. That is, you

may have to know a lot of what’s in the book before you can copy all

the procedures in Appendix I without making too many errors.

3. You can copy the disk from someone who has purchased it or copied it

from Appendix I. Let me make this clear. The procedures on the

LWAL Procedures Disk are copyrighted by Educational Alternatives,

1983. However, anyone who has purchased a copy of this book is here¬

by given permission to make one copy of the LWAL Procedures Disk

(and one back-up copy) for his or her personal use.

Similarly, if you have already obtained the LWAL Procedures Disk

you may make a copy of it for someone else who has purchased Learning

With Apple Logo. You may not sell anyone a copy of the disk, but you can

give a copy to anyone who has purchased the book. Please don’t give a

copy to anyone who has not purchased the book or trade or sell the proce¬

dures on the disk.

My entire purpose in providing the disk is to make it possible for you

to use this book. I hope that you will help anyone who has bought and paid

for the book get a copy of the disk. But to protect my rights. I’m asking

you not to give or sell the procedures to anyone else.

What is Logo? There are really several answers. First, Logo is a com¬

puter language, that is, a code for translating numbers and symbols that

people understand into electronic impulses that the computer “under¬

stands.”

A longer, more useful answer is that Logo is like a dumb hut powerful

mechanical servant. Its job is to help you make the computer do things.

You give it commands, and Logo’s helpers—commands and procedures—

carry them out. If Logo doesn’t understand a command it will tell you. You

can teach it how to perform new commands by using things it already

knows. The things you teach it are called procedures. Every procedure

gives Logo more helpers, so that it can do more for you.

When we talk about Logo as if it were a person that “knows,” “under¬

stands,” “wants to help you,” etc., we do so because it helps us think

about solving problems with the computer. We know that Logo isn’t really

a person, but if we can visualize Logo as a personality, it helps us under¬

stand its behavior at a number of tricky points. The cartoon drawings

throughout the book, showing Logo as a friendly “wizard” and Logo’s

Before You Start Reading This Book / 9

helpers as mechanical “robots,” are designed to help you visualize the

workings of the computer.

There’s even a longer answer. Logo isn’t just something you learn. It’s

something you learn with. When you use Logo to make the computer do

things, you’re learning about the things you’re making it do. Learning with

Logo can also help you understand more about yourself and the ways you

learn. The rest of this book is designed to help you understand Logo as

something to learn with.

If you want to understand more about Logo as a computer language,

you should read one of Harold Abelson’s books, Apple Logo, Logo for the

Apple 11, or TI Logo.' If you want to understand more about the back¬

ground and philosophy of Logo as a learning environment, I strongly rec¬

ommend Seymour Papert’s book, Mindstorms: Children, Computers, and

Powerful Ideas,- which explains how and why Logo came to be,.and how it

makes the computer into what he calls “an object to think with.”

And now, time to get started!

'Published by Byte Books, McGraw-Hill, New York, 1982, 1983.
^Published by Basic Books, New York, 1980.

10 / Getting Started

CHAPTER 1

Command
Short
Form Examples With Inputs

PRINT PR PRINT [CATHY PERINI]

CLEARSCREEN CS
FORWARD FD FORWARD 20, FD 20

BACK BK BACK 10, BK 10

RIGHT RT RIGHT 90, RT 90

LEFT LT LEFT 30, LT30

ERALL

{No tool procedures or files used.)

Getting Started / 11

1 Getting Started

In this chapter you will learn to load Logo from a Logo Language Disk

and to use the Apple II computer keyboard. You’ll also meet a very fam¬

ous character, the Logo turtle, and learn some commands that make the

turtle move and draw pictures on your TV screen.

To start working with Logo, you’ll need an Apple II computer and an

Apple Logo Language Disk. It might be a good idea to have your Logo

journal and a pen or pencil handy, too, in case you want to write something

down.

Section 1.1.
Loading Logo from an
Apple Logo Language
Disk

First things first. Before you can make the computer do anything, you

have to load the Logo language into the Apple II computer’s memory. To

do this, follow the steps shown in Figure 1.1.

• Make sure the Apple is turned oflF. • Open the disk drive and slide the

Apple Logo Language Disk into it.

• Close the cover of the disk drive. • Turn the Apple on, using

the power switch at the rear.

Figure 1.1: The sequence of actions involved in loading Logo.

12 / Getting Started

mFAU

Wait . . . you’ll hear some soft

clicking sounds from the disk

drive . . . then wait some more.

After a few seconds, a message

will appear on the screen. If

you have your own Logo work

disk, remove the Apple Logo

Language Disk from the disk

drive, insert your own work

disk, and press the key labeled

RETURN. (Don’t type the let¬

ters R, E, T, U, R, N.) If you

do not have your own Logo

work disk, just press RETURN.

• Wait . . . you’ll hear more soft

clicking. After a few more sec¬

onds, a WELCOME TO LOGO
message will appear on the

screen.

HELCONE TO LOGO Al.S

PRESS THE RETURN KEY TO BEGIN

ISsE^gV r§o2?"?NgH"pg^bi

<C> LOCO COMPUTER SYSTEMS INC. 1982

• Remember to put your Apple Logo

Language Disk away in a very safe

place.

Figure 1.1 (continued).

The symbol appearing to the left is used to help you avoid a possible

problem.

If you do not get a beep when you turn on the power, or if the yellow

POWER light on the keyboard doesn’t come on, check to make sure every¬

thing is plugged in properly.

If the red light on the disk drive doesn’t go on or if the disk drive

doesn’t begin making a series of gentle clicking noises, check to see that it

is connected properly, that the disk is inserted properly, and that the cover

is closed.

If you have difficulty loading Logo, get help from someone who knows

how or read the instructions that came with your Apple Logo Language

Disk.

Getting Started / 13

How to STOP Using Logo

Section 1.2.
Using the Apple

Keyboard

Special Keys

If you are all finished with the computer, just put the Apple Logo Lan¬
guage Disk away, along with any other disks you have been using. Then
turn the power off using the power switch on the back of the computer.

If you are finished using Logo but someone else is ready to use it,
don’t turn the power off. Instead, type;

ERALL RETURN

This will erase everything, clearing the computer’s memory and leaving
Logo ready for a new user. When you see a word in dark type like
RETURN in this book, it means press the key labeled “RETURN.” Do not

type the word “RETURN” on the keyboard.

Before you can give commands to the computer you need to know
something about how the Apple’s keyboard works. A computer keyboard is
a lot like a typewriter. When you press a key, the symbol you type appears
on the TV screen instead of on paper. The blinking light on the screen is
called the cursor. It shows where the next letter, number, or symbol will be

typed on the screen.
Look at the drawing of the Apple II plus keyboard in Figure 1.2. There

are a few special keys on the keyboard that work differently than those on a
typewriter. The keyboard of the Apple lie is described on page 14.

Figure 1.2: The Apple II plus keyboard, including letters, numbers, and special keys.

The special keys on the Apple II plus are the ones marked CTRL,

SHIFT, RESET, REPT, RETURN, and -►

The key makes the computer backspace and erase the letter or
number you just typed. This key is called the left arrow key.

The CTRL key is used in combination with other keys for special com¬
mands. (“CTRL” is short for “control.”) For example, CTRL-G, a combi¬
nation of the CTRL and the G keys, makes Logo stop whatever it is doing.
Whenever you use the CTRL key, hold it down first and keep it down while

pressing the other key.
The SHIFT key appears twice on the keyboard. It is also used in com¬

bination with other keys. For example, SHIFT-1 makes the computer print
the ! symbol. SHIFT-/ prints a ?. Whenever you use the SHIFT key, hold it

down first and keep it down while pressing the other key.

14 / Getting Started

Apple He

HTFAU

EXHMATMfr

If you have an Apple II plus, SHIFT-N and SHIFT-M print the [and]

symbols on the screen. These are very important symbols for Logo, as you

will soon see. SHIFT-2 prints ", another important Logo symbol.

RESET is a key that resets the computer and forces you to load Logo

all over again. Avoid pressing RESET while using Logo!

On the Apple II plus, REPT is a key that is used in combination with

other keys. It makes the computer repeat the other key you type as long as

you keep both keys down.

RETURN is the most important special key for Logo. After you have

typed a Logo command, RETURN tells Logo to do it. You must type

RETURN after every Logo command.

CTRL-B and are used to move the cursor left and right.

The keyboard of the Apple He is a bit different from that of the Apple

II plus. [] are marked directly on the keyboard. The " symbol is printed by

typing SHIFT-', which is located directly under [and]. If you hold down

any key for a few seconds, that key will keep repeating.

Be sure the CAPS LOCK key is down when you use Logo. Also, do

not use SHIFT when you type [] on the Apple He.

This symbol is an invitation to explore the use of the computer, to see

what you can find out. It’s one of the best ways to learn exactly what the

computer will do.

Here are some ways to explore the use of the keyboard:

• Type a lot of different keys. Then press and see if you can rub

them all out.

• Type CTRL-G by pressing CTRL and G at the same time. Watch what

the computer prints on the screen.

• Use SHIFT with a lot of other keys. Make sure you can type [and] us¬

ing SHIFT-N and SHIFT-M, if you have an Apple II plus. Make sure

you can type " using SHIFT-2 on an Apple II plus, or SHIFT-' on an

Apple He. [,] and " are important for typing certain Logo commands.

• If you have an Apple II plus, use REPT with other keys and see what

happens. If you have an Apple He, hold a key down for a few seconds.

• Press the RETURN key. Logo may complain and print a strange mes¬

sage, but you’ll learn about this later.

• Type anything you like. Then use -► and CTRL-B to move the cursor.

Notice the difference between CTRL-B and They both move the

cursor back, but only rubs out symbols as it moves back. Also no¬

tice the difference between and the SPACE BAR. Both move the

cursor forward, but only SPACE BAR leaves a space.

Getting Started / 15 1
WARNING! The next exploration will cause the computer to “crash.” Its

V purpose is to show you what not to do! When you are finished, you

M will have to restart Logo by following the directions in Section 1.1

again.

I • Press RESET. (If nothing happens, press the combination

• CTRL-RESET.) You will see a message on the screen: UH-OH. YOU
HIT THE RESET KEY YOU’D BETTER REBOOT LOGO

I This means that the computer has “lost” part of the Logo program.

* This is called a system crash (or just crash for short).

I When the system crashes the computer may forget everything you have

been working on or even forget how to do Logo. You have to load Logo all

over again before you can go on to the next section. To load Logo, get out

I your Apple Logo Language Disk, and follow the directions given in Section

■ 1.1.

iiani& mr

This symbol is for people who want to he/p other people learn Logo or for people who

want to think more about what they are learning when they learn Logo.
The last exploration, pressing the RESET or CTRL-RESET key, is an important one. It is

very useful to explore a potential disaster before experiencing it accidentally. There are two

reasons for this. First, it may help you avoid causing the disaster by accident. Second, it

helps you learn the consequences and how to recover.
One of the best ways to learn how to use a computer system is to explore its limits, to

see what happens when things are pushed to extremes. Rather than tell a learner “Never

press RESET!” say, “Press RESET now and see what happens.” A good motto for Logo

explorations is “You can’t hurt the computer! Try anything you like.”
Obviously this does not apply to physical damage like punching the keyboard with your

fist or pouring Coke on it. Such “explorations” should be discouraged if you want to have a

computer left to explore with. But aside from physical damage, anything goes. I

Section 1.3. Once the computer prints “Welcome to Logo” you are ready to go.

Typing Logo Commands The ? under the “welcome” message is called a prompt. This is the com¬

puter’s way of telling you it’s ready for a command. It’s a short way of say¬

ing, “I’m ready. What do you want me to do next?”

UIIIOHI III I iii.ii tti %

J

Figure 1.3: The Apple II screen showing the welcome message and prompt.

16 / Getting Started

The blinking light next to the ? is called a cursor. Its job is to help you

type. It shows you where the next letter, number, or symbol you type will

appear on the screen. It’s very important when you want to change some¬

thing you’ve already typed (more about that later).

Now type something simple—your name if you like. If your name is

Cathy Perini, you’ll see this:

7CATHY PERINW

The cursor is still blinking next to the last “1.” Now press the

RETURN key. This tells the computer to “do it!” after typing a command.

After pressing RETURN, you should see this on the screen:

7CATHY PERINI
I DON’T KNOW HOW TO CATHY
?■

Logo complained! It doesn’t know how to “do” CATHY.

Figure 1.4: Logo complaining about an unknown command.

When Logo prints a ? it always expects you to type a command, some¬

thing for it to do. Type this:

PRINT [CATHY PERINI] RETURN

Getting Started / 17

Now you should see all of this on your screen:

7CATHY PERINI

I DON’T KNOW HOW TO CATHY
7PRINT [CATHY PERINI]

CATHY PERINI

7B

mem

If you have an Apple II plus, [and] may not be marked on your key¬

board. Did you remember to type SHIFT-N and SHIFT-M to type [and]?

Hold down the SHIFT key first and then press the N or M key.

You should also remember that RETURN means press the key marked

“RETURN.”

In the last example, PRINT told Logo to print what followed. It will

print anything you type between [and]. [CATHY PERINI] in the example is

called the input to PRINT. Logo is very fussy about how to type a com¬

mand. It’s easy to make it complain!

If you make a mistake while you are typing, you can always use the

-► and CTRL-B keys to move the cursor and the key to rub out any¬

thing that was typed incorrectly. Then just type the correct symbol in its

place.

Type these examples and see which ones make Logo complain:

PRINT RETURN
PRINT CATHY PERINI RETURN
PRINTCATHYPERINI RETURN
PRINT[CATHY PERINI] RETURN

Of course you don’t have to use “Cathy Perini.” Type your own name

or anything you like. Experiment with the PRINT command. Try printing a

lot of different things on the screen. See how many ways you can find to

make Logo complain. The messages Logo prints when it complains are

called error messages.

iVNESFK IMA

This symbol is for ideas that give you more power. You can’t hurt the

computer by typing commands! Type anything you like. On the other hand,

Logo is very fussy! If it doesn’t understand what you type, it will complain.

18 / Getting Started

“Trying to make Logo complain” is an excellent activity whenever you’re learning
something new. It helps you learn exactly what Logo will and won’t accept. It also shows
you what kinds of messages Logo prints when it complains. It helps a beginner get used to
the idea that Logo is fussy and complains a lot.

Even very experienced Logo users make frequent typing errors or make little mistakes in
Logo syntax—exact rules for typing Logo commands. Logo syntax is not arbitrary. These
are important reasons why PRINT [CATHY PERINI] “works” and PRINT CATHY PERINI
doesn’t. As you go along, you’ll come to understand these better. For now, it’s useful to
think of them as if they were arbitrary and just learn them by rote. But the best way to learn
them is to experiment with all kinds of right and wrong ways, if only just to get used to the
idea that there are “right ways” and “wrong ways” to type Logo commands.

Section 1.4.

Meet the Turtle

Figure 1.5: The screen with the turtle as it appears after typing the CLEARSCREEN
command.

Now that you know how to give Logo a command, you’re ready to

meet the turtle. The turtle is usually used to draw with, so the first com¬

mand to give Logo is:

CLEARSCREEN RETURN or CS RETURN

CLEARSCREEN tells Logo, “Give me a blank screen to draw on and

put the turtle in the middle of it heading straight up.’’ CS is the short form

of CLEARSCREEN

Honki HUT

You can command the turtle to move by typing FORWARD and BACK.
You command it to turn by typing RIGHT and LEFT. Before the turtle will

move or turn, you have to tell Logo how far to move or turn it by typing an

input number.

Try these commands. Be sure to leave a space between the command

and its input number, otherwise Logo will complain. And be sure to press

RETURN after each command. Otherwise Logo won’t do anything.

FORWARD 40
RIGHT 30
FORWARD 50
BACK 80
LEFT 90

Getting Started / 19

A

FORWARD 40

r
RIGHT 30 FORWARD 50 BACK 80

Figure 1.6: The results of a series of turtle commands.

LEFT 90

HTFAU

Type CLEARSCREEN again to clear the screen.

mFAU

Remember to press RETURN after each command to make the comput¬
er do it. If you type FORWARD without an input number or RIGHT30 with¬
out leaving a space, Logo will complain. (Try to make Logo complain.)

You can shorten these Logo commands by typing FD, BK, RT, and LT

instead of FORWARD, BACK, RIGHT, and LEFT:

FD 40
RT 30
FD 50
BK 80
LT90

20 / Getting Started

Figure 1.8: The results of a series of shortened turtle commands.

BCntfUffM

In the next chapter you will have many more chances to explore with

the turtle. Try a few things now to help you get used to the basic turtle

commands:

• Move the turtle all around the screen using FORWARD, BACK, RIGHT,

and LEFT with different input numbers.

• Clear the screen by typing CLEARSCREEN or CS. Make the turtle

draw a weird shape.

• Pick a point on the screen and make the turtle move there.

• How far is it from the center of the screen to the top edge or to either

side? Use the turtle to find out.

• Type FORWARD, BACK, RIGHT, or LEFT with very targe input num¬

bers. Then try very small numbers. What are the largest and smallest

distances you can make the turtle move?

The entire purpose of this chapter is to help someone get used to the computer, the
keyboard, and the form of Logo commands. One thing you can do to help with this is to post
a list of turtle commands somewhere near the computer. As new commands are learned, the
list can be expanded. With a list posted near the computer, a learner doesn’t have to keep
flipping through the book trying to remember how a particular command is spelled or whether
it needs an input.

If you are in a school or club where a lot of different people may be using the computer,
you might also want to post a list of instructions for loading Logo from a disk and any other
“housekeeping” functions. If clear instructions are posted near the computer, students can
help each other and there is much less strain on a teacher.

mtnf& hWT

i I

i

CHAPTER 2

Short
Command Form Examples With Inputs

PENUP PU
PENDOWN PD
SETPC SETPC 3,
SETBG SETBG 5,
LOAD LOAD "CIRCLES
HIDETURTLE HT
SHOWTURTLE ST
WRAP
FENCE
WINDOW
CLEAN
HOME
FULLSCREEN CTRL-L
SPLITSCREEN CTRL'S
TEXTSCREEN CTRL-T

LWAL Procedures Disk files used: "CIRCLES

New tool procedures used:

Tool Procedure Examples With Inputs

RCIRCLE RCIRCLE 20

LCIRCLE LCIRCLE 10

RARC RARC 40
LARC LARC 20

The World of the Turtle / 23

2 The World of The Turtle

In this chapter you will spend a lot more time exploring the world of the

turtle, learning more commands to control it, and learning to make it

draw shapes and designs in living color.

Once you have made the turtle draw a design that you like, you might

want to write down all the commands in your Logo journal. In Chapter 4

you’ll learn how to teach the computer new commands and how to save

them on your own Logo work disk.

Section 2.1. The best way to find out what the turtle can do is to explore its world.

Basic Turtle Commands Here are some Logo commands to help you do that:

CLEARSCREEN or CS

starts the turtle in the center of a clear screen. Use CLEARSCREEN when¬

ever you want to clear the turtle’s screen for a new design.

TEXTSCREEN

makes the turtle disappear, leaving the entire screen clear for typing.

FORWARD and BACK, or FD and BK

move the turtle forward and back. FORWARD and BACK need input num¬

bers to know how far to move the turtle:

FORWARD 20

or

FD 20

BACK 50

or

BK 50

RIGHT and LEFT, or RT and LT

turn the turtle to its own right or left. RIGHT and LEFT need input numbers

to know how far to turn the turtle:

RIGHT 45

or

RT 45

LEFT 100

or

LT100

24 / The World of the Turtle

HTFAU

Always leave a space between a command and its input. If you type

FORWARD100 or RT30, Logo will complain.

PENUP or PU
lifts the turtle’s pen up so that it won’t draw when it moves. Once the

turtle’s pen is up, it will stay up until you put it down again.

PENDOWN or PD

puts the turtle’s pen down so that it will draw lines when it moves.

PENUP and PENDOWN are used when you want to draw a design that

starts somewhere besides the center of the screen or when you want to

have one drawing inside of or next to another one.

Try using PENUP and PENDOWN. First type CLEARSCREEN to clear

the screen.

CLEARSCREEN

PENUP

FORWARD 50

RIGHT 90

PENDOWN

FORWARD 50

PENUP

RIGHT 45

FORWARD 20

PENDOWN

RIGHT 90

FORWARD 50

Figure 2.1: A turtle drawing made using PENUP and PENDOWN.

The World of the Turtle / 25

Later you can use PENUP and PENDOWN to make some designs like

those in Figure 2.2.

0

□
 0

Figure 2.2: Simple drawings made using PENUP and PENDOWN.

Section 2.2.
Exploring the Turtle’s

World

You’re going to be spending a lot of time with the turtle. Take some

time now to see how much you can find out about the turtle and its world.

In the last chapter you began exploring with the turtle. Here are some sug¬

gestions for further explorations. Use your own ideas, too.

ixnmjm

• Pick a point on the screen and make the turtle move there. Try points

at different places on the screen.

b

Figure 2.3: Picking a point on the screen (a) and moving the turtle to it (b).

How far is it from the center of the screen to the top edge? Use the

turtle to find out. What happens if the turtle goes off the edge of the

screen? Can you make it come back?

26 / The World of the Turtle

Figure 2.4: Finding the distance from the center to the top of the screen.

• Type CLEARSCREEN to clear the screen. Turn the turtle so that it is

heading straight across the screen. How far do you have to turn it?

When you think it is heading straight across, make it go forward and

see.

Figure 2.5: Turning the turtle to draw straight across the screen—(a) turned too little, (b)
turned too much, (c) turned just right.

• Use the turtle to find out how far it is across the screen.

The World of the Turtle / 27

Figure 2.6: Finding the distance from the center to the side of the screen.

• Make the turtle go off the edge of the screen. Can you make it wrap

around so that it comes back to the place it started? How far does it

have to go?

Figure 2.7: A turtle line wrapped from the right to the left side of the screen.

When the turtle goes off one edge of the screen and comes back on the

opposite edge, we say that it wraps around the screen. You can think of it

as a piece of string, wrapping around a package.

Figure 2.8: Wrapping a package.

28 / The World of the Turtle

• Type CLEARSCREEN. Then turn the turtle just a little. Now type a

FORWARD command with a large input number. Can you make it keep

wrapping around the screen?

Figure 2.9: A turtle line wrapped around the screen once (a). A line wrapped around the
screen several more times (b).

(

j

I
I

1

nrmu

Sometimes the turtle seems to disappear behind the printed lines on the

bottom of the screen. Even though you can’t see it, it’s still there.

Figure 2.10; The turtle at work behind the print at the bottom of the screen even where you
can’t see it.

Sometimes, you may want to see the full graphics screen.

FULLSCREEN or CTRL-L lets you see the full screen.

1

r

KSMtamr

The World of the Turtle / 29

Figure 2.11: The turtle’s work is revealed by typing FULLSCREEN.

Another special key command, CTRL-S, lets you see the split screen

when you want to type commands again.

“Explorations” and “Answers”
Explorations are one important way of learning about the turtle’s world. Some people

enjoy them a lot, while others seem to prefer more “purposeful” activities, projects to make
the turtle draw particular preplanned shapes. A Logo learning experience is made up of a
combination of explorations and projects, shifting back and forth between the two modes. An
exploration often leads to an idea for a project or to information that will be useful in later
projects.

For example, suppose you want to make the turtle draw a square. The critical
information you need is the angle to turn the turtle at each corner. The angle needed for
drawing a square is the same as the angle needed to move the turtle straight across the
screen. It happens to be 90 degrees, one fourth of 360 degrees. Turning 360 degrees is a “total
turtle rotation.” Factors of 360, such as 30, 45, 90, 120, etc., are very important “number
facts” in the world of turtle geometry. These angles are often first discovered by learners
through explorations.

Important skills developed through these explorations include learning to use the
keyboard, becoming familiar with the concepts of forward, back, right, and left as they apply
to the turtle, and learning to estimate distances and rotations on the turtle screen. These skills
can also be practiced in a more structured way using the SHOOT game introduced in Chapter
3.

Learning strategies for finding answers to exploratory questions is more important than
the answers themselves. If you think of these explorations as learning experiences, the lesson
to be learned is not “the distance to the edge of the screen.” The most important thing to be
learned is that you can find this out yourself by using the computer.

There are many different approaches and many possible “answers” to any of these
questions. If you’re working with a group of students, a good way to emphasize this kind of
learning is to pose an exploration problem and ask them to share possible ways of finding the
answer. Then, after everyone has worked on the problem, ask people to share what they did
and how they thought about it. In the long run, establishing an environment in which a
process and the-thinking behind it can be discussed (and even argued about) is the most
important “learning goal” that you can pursue through explorations.

Another suggestion for working with a group is to make a bulletin board on which
students can write their questions, discoveries, exploration suggestions and project ideas.
This also helps establish a learning environment in which students can teach and learn from
each other.

30 / The World of the Turtle

Section 2.3.

Drawing Shapes with the

Turtle

raffism IMA

The turtle can draw many shapes. Simple ones like squares can be used

to build more complicated shapes like those in Figure 2.12.

Figure 2.12: Simple turtle drawings made from squares.

You’ll learn how to do this kind of thing soon. First, you should start

with simple shapes. Squares and rectangles are easy to draw. A square has

four equal sides and four equal turns.

You can figure out how to draw a square with the turtle by pretending

to be the turtle yourself and walking in a square on the floor. For example,

walk five steps forward, turn right 90 degrees, and keep repeating that until

you get back where you started.

Playing Turtle, a learning game in which you pretend to be the turtle, is

a good way to solve a lot of turtle drawing problems. If you can’t decide

how to draw something on the screen, stand up and solve it yourself hy pre¬

tending to be the turtle and walking the shape you are trying to draw.

Figure 2.13: Playing turtle.

The World of the Turtle / 31

Now that you’ve walked in a square, it should be easy to draw one. I’ll

help you start. First type CLEARSCREEN to clear the screen. Then type

FORWARD 50
RIGHT 90
FORWARD 50

A O

A
Figure 2.14: Starting to draw a square: CLEARSCREEN, FORWARD 50, RIGHT 90,

FORWARD 50.

Can you finish drawing the square yourself?

\j

There is another way to “play turtle’’ without getting up and walking.

You can do this while sitting and using the computer. Just turn your head

and shoulders so that they are lined up with the direction the turtle is head¬

ing on the screen. This will help you decide which way the turtle should

turn next and how far it has to turn.

/Wffixm IMA

Figure 2.15: Playing turtle while sitting at the screen.

• Draw a large square and a small square.

• Make a square that turns to the left.

• Turn the turtle first and draw a tilted square.

Figure 2.16: Several different squares.

• Now try drawing some rectangles. Rectangles are like squares, but only

the pairs of opposite sides are equal. If you need help to draw a rectan¬

gle, stand up and walk one first.

Figure 2.17: Several different rectangles.

• Make the turtle draw your initials.

Figure 2.18: Two sets of initials drawn by the turtle.

• Draw any shapes you like.

The World of the Turtle / 33

Figure 2.19: Some of the many different shapes the turtle can draw.

If you want to teach the computer a new command so that it will re¬

member how to draw one of your shapes, turn to Chapter 4. Be sure to

come back and read the rest of Chapter 2 after learning how to teach the

computer a new command.

Playing Turtle
Playing turtle is one of the most useful and important Logo activities. This is because it

allows a learner to identify with the turtle and thereby make use of some of the most deeply
ingrained and thoroughly understood knowledge that a person has—the knowledge of how to
walk and turn with one’s own body. By applying this knowledge it is possible to make a turtle
problem a concrete and practical one—“How would I do this if I were the turtle?’’—rather
than an abstract and confusing one—“How can I make the turtle do something on that
strange TV screen?’’ By physically standing up and pretending to he the turtle, I can actually
walk through the problem that I am trying to solve on the screen. Having solved the problem
myself, I can then transfer the solution to the screen. If you have any doubts about the
effectiveness of this approach, I urge you to put aside any inhibitions you might have and try
it yourself. It works remarkably well!

You can play turtle in two ways. First, you can solve a problem physically in an open
space as I have just described. Second, you can simply align your head and shoulders with
the turtle’s position on the TV screen. This second approach is often helpful when you need
to discover what the turtle should do next. You’ll find that you can do this quite effectively
without actually getting up and walking through the turtle’s steps.

Playing turtle is an excellent activity to use with a group of students. All it requires is a
large, open space in which the activity can be carried out. Every turtle action can be
simulated as a physical activity. One person plays the turtle and other people give right and
left commands and tell it how many steps to take.

The activity of playing turtle can be used to foster group cooperation as well as to learn
about turtle behavior. Playing turtle requires that everyone agree on the terminology to be
used in commanding the turtle. For example, everyone playing has to agree on how to
interpret turtle commands like RIGHT 30 or FORWARD 10. If degrees are used as inputs to
right-turn and left-turn commands, the number of possible inputs should probably be limited
to multiples of 90, 45, or 30 so the person playing turtle can turn to one of four, eight, or
twelve different orientations. The important thing is not so much getting the angles and
distances exactly correct as getting all the players to agree on how to follow turtle commands.

Another important thing to establish when playing turtle is that the “turtle’’ can only
follow orders, not interpret them. When the turtle walks forward, it should walk straight
ahead and not veer either to the left or right, even though the person playing turtle at the
moment may know that the present direction is incorrect.

When playing turtle with a group for the first time, it’s usually a good idea for the teacher
or group leader to take on the role of the turtle first. This has several important benefits.
Students enjoy ordering a teacher around. Also the teacher can accurately model the dumb
behavior of the turtle so other people can see how it ought to be done. Finally, playing turtle
can seem quite “silly’’ the first few times it is tried. If the teacher takes on the role, other
people may be more comfortable being the turtle later.

The other way of playing turtle is to orient your head in the direction the turtle is heading
to help determine which way the turtle should turn or move next. For people who have
difficulty knowing right from left or telling which way the turtle should turn when it is facing
downward on the screen, this can be a very helpful technique. It is used over and over for
solving all kinds of turtle-turn problems. Someone playing turtle this way might also want to
stand up and play turtle by walking the steps and turns.

Seeing the Turtle
Some people seem to have difficulty seeing where the turtle is pointing. This is because

of the difference between what the computer can calculate—the exact angle of the turtle—and
what can be easily shown on the TV screen, using what is called “high-resolution graphics.”
The TV image is just not fine enough to show all angles clearly. It helps to remember that the
turtle heads in the direction given by the solid corner of the triangle.

A related problem is that when the turtle turns a small amount, RIGHT 1 or RIGHT 3, for
example, there may not be any visible change in the turtle’s screen position. This is because
there are only 36 different turtle positions that can be shown on the screen. Any lines drawn
by the turtle will be drawn in the correct direction, however. Try this sequence of commands
and watch what happens.

CLEARSCREEN
FORWARD 50
BACK 50
RIGHT 5

The turtle does not appear to turn after the RIGHT 5 command.

FORWARD 50

The new line is drawn at the corrected angle.

CLEARSCREEN FORWARD 50 BACK 50

r

A

RIGHT 5 FORWARD 50

Figure 2.20: Although the turtle does not appear to turn when given the RIGHT 5
command, the final line drawn shows that it did turn.

The World of the Turtle / 35

Section 2.4.

Living Color

If you have a color TV or monitor, the turtle can draw in six different

colors, using the SETPC (set pen color) command to set the color of the

turtle’s pen. The actual colors you get will depend on the color setting of

your TV screen. SETPC needs an input number between 0 and 5.

SETPC 0 draws in black.

SETPC 1 draws in white.

SETPC 2 draws in green.

SETPC 3 draws in violet.

SETPC 4 draws in orange.

SETPC 5 draws in blue.

The screen can also have six different background colors using SETBG

(set background color) with input numbers from 0 to 5.

Here are some ideas for exploring different pen and background colors.

Type SETPC 2 and then draw a green square with the turtle. Change to

another color, and draw a different-sized square nearby.

Type CLEARSCREEN to clear the screen and change the background

with the SETBG 2. Draw different shapes on this background, using

black, white, and violet pens (SETPC 0, SETPC 1, and SETPC 3).

What will happen if you draw on background 2 with pencolor 2?

Draw a black shape on white background.

Change background colors after drawing a shape.

Draw a shape with many different colors in it. Here are the commands

for a square with black, green, violet, and orange sides on a white

background:

SETBG 1

SETPC 0

FORWARD 50

RIGHT 90

SETPC 2

FORWARD 50

RIGHT 90

SETPC 3

FORWARD 50

RIGHT 90

SETPC 4

FORWARD 50

The Apple II computer does not allow green or violet to be drawn next

to orange or blue. You can’t have a green or violet line on an orange or

blue background, and you can’t have an orange or blue line on a green or

violet background. Sorry, that’s just the way it is.

HTFAU

36 / The World of the Turtle

Section 2.5.
Designs with Circles and
Arcs

HTFAU

Logo does not have built-in commands to draw circles and arcs.

Instead, you will have to load those from your LWAL Procedures Disk.

The helper’s hint which follows explains how to use the circle and arc

procedures in the Apple Logo startup file.

Note: If you do not have an LWAL Procedures Disk, you can ask an

adult or an older friend who knows more about Logo to copy the proce¬

dures for you from Appendix I. Otherwise you will have to skip this section

until after you have read Chapter 4. After you read Chapter 4 you will be

able to copy the procedures from the appendix yourself and save them on

your own LWAL Procedures Disk.

If you do have the circle procedures saved on a disk, put that disk in

the disk drive and type

LOAD "CIRCLES RETURN

To type " on an Apple II plus, type SHIFT-2, that is, press the SHIFT
key and the 2 key at the same time. To type " on an Apple He, type SHIFT-'.

Only type " before the name of the file. Logo never uses " at the end of

a word.

After you type LOAD "CIRCLES the disk drive will whir and click just

as it does when you load Logo.

Logo now knows a set of procedures for drawing circles and arcs.

RCIRCLE and LCIRCLE draw circles. RARC and LARC draw quarter cir¬

cles. Each of these commands needs one input number—the radius of the

circle or arc you are drawing. (An arc is a part of a circle. The radius of a

circle or arc is the distance from its center to its edge.) RCIRCLE and

RARC draw shapes curving to the right. LCIRCLE and LARC curve to the

left.

RCIRCLE 20

LCIRCLE 10

LARC 20

RARC 10

o
a b c d

Figure 2.21: Drawings made by circle and arc commands: (a) RCIRCLE 20, (b) LCIRCLE
10, (c) LARC 20, (d) RARC 10.

The World of the Turtle / 37

mnf& HUT

Apple Logo does have circle and arc procedures in its startup file. If you want to use
them, leave the Apple Logo Language disk in the disk drive when you load Logo. You can
use the procedures CIRCLER and CIRCLEL wherever you see RCIRCLE and LCIRCLE in this
book. You can also use ARCR and ARCL instead of RARC and LARC. ARCR and ARCL need
two inputs, a radius and an angle. To use them in the same way as RARC and LARC, you will
have to keep the second input, the angle, fixed at 90. For example, use ARCR 10 90 in place
of RARC 10. Use ARCL 20 90 in place of LARC 20. Section IIL7 of Appendix III explains
how to add my circle and arc procedures to the Apple Logo startup file.

I have included my own circle and arc procedures for several reasons. The names
RCIRCLE, LCIRCLE, RARC, and LARC are easy to use and remember, and I prefer to use
arc procedures with only a radius input, at least at first. In addition, I think that the
procedures themselves are easier to understand. The use of ARCR and ARCL is explained on
pages 98-100 of the tutorial booklet. Introduction to Programming through Turtle Graphics,

that comes with Apple Logo.

I

1

1

j

t
j

Here are some interesting things you can do with circles and arcs. You

will have a chance to do a lot more when you read Chapter 5.

• Draw circles of different sizes curving to the right.

Exnmrm

Figure 2.22: Different-sized circles made with RCIRCLE.

• Make the same design with circles curving to the left.

J

Figure 2.23: Different-sized circles made with LCIRCLE.

• Put them together to make a “butterfly.”

• One interesting thing to do with circles is to see what happens when
they get very big.

RCIRCLE 50
RCIRCLE 100
RCIRCLE 200
RCIRCLE 500
and so on

• What input number would you need to make a circle that splits up and
rejoins itself at the center, like this one?

Figure 2.25: A circle big enough to wrap around the screen and touch itself.

• See if you can make a wave pattern like this with PARC and LARC.

Figure 2.26: A wave pattern made with PARC and LARC.

The World of the Turtle / 39

• If you keep making the radius of your arc bigger, you can make a kind

of spiral.

Figure 2.27: A spiral made from bigger and bigger PARC commands.

Circles and arcs are a good medium for exploring symmetry. There is a general principle

at work here. Any turtle drawing can be made into a symmetrical one by interchanging all

RIGHT and LEFT commands and then combining the original drawing with the reversed one.

It’s also possible to make other shapes with right and left-turning versions—RSQUARE and

LSQUARE, RSTAR and LSTAR, etc. There will be more about this later in the book.

Hani& HUT

Section 2.6. Here are a few more turtle commands that can be very useful. They are

More Turtle Commands used in projects later in the book.

HIDETURTLE and SHOWTURTLE or HT and ST

hide and show the turtle without changing its position. A turtle that is

hidden doesn’t “spoil” a picture:

Figure 2.28: A turtle drawing with turtle shown (a) and hidden (b).

Hiding the turtle before drawing a design makes the turtle draw faster.

This is very helpful for designs with a lot of different lines in them, like

circles. Try this:

CLEARSCREEN

RCIRCLE 50

CLEARSCREEN

HIDETURTLE

RCIRCLE 50

SHOWTURTLE

See how much faster the circle is drawn with the turtle hidden?

FENCE

forces the turtle to stay within the boundary of the screen. If you try to

send it across the boundary, Logo will complain. Try this:

CLEARSCREEN

FENCE

FORWARD 200

Figure 2.29: The message given by Logo when the turtle is commanded to move too far in
FENCE mode.

WRAP

brings things back to normal. Try this:

FENCE

FORWARD 200

WRAP

FORWARD 200

The World of the Turtle / 41

Figure 2.30: The turtle wraps around the screen normally after the WRAP command is

given.

WINDOW

allows the turtle to go off the edge of the screen, but once it leaves the

screen you can’t see it any more. WINDOW makes the screen seem like a

window. You can see anything that’s right in front of the window, but you

can’t see anything beyond the window’s edge. Try this:

CLEARSCREEN

WINDOW

RIGHT 80

FORWARD 180

LEFT 150

FORWARD 180

The result is shown in Figure 2.31a. The turtle has left the screen and

returned to it, but you can see only the lines directly in front of the screen.

Now try this sequence:

CLEARSCREEN

WRAP

RIGHT 80

FORWARD 180

LEFT 150

FORWARD 180

This time, the turtle wraps around to the left side of the screen and

then back to the right again. The results are shown in Figure 2.3lb.

Figure 2.31: The results of the same series of commands in w indow mode (a) and w rap

mode (b).

CLEAN

clears the turtle’s screen but leaves the turtle in place. To see the difference

between CLEARSCREEN and CLEAN, move the turtle away and then type

CLEAN.

CLEARSCREEN

RIGHT 30

FORWARD 20

CLEAN

FORWARD 20

. /
Figure 2.32: A sequence of commands showing the effect of the CLEAN command.

HOME
sends the turtle to the center of the screen, heading straight up. The

combination of HOME and CLEAN does exactly the same thing as the

CLEARSCREEN command.

CLEARSCREEN

FORWARD 50

HOME

CLEAN

Try reversing CLEAN and HOME and see what happens.

CLEARSCREEN

FORWARD 50

CLEAN

HOME

Can you see why there is a line left on your screen?

The last set of commands I’ll show you in this chapter change the way

the screen looks.

CTRL-L or FULLSCREEN

allows you to see the full turtle screen but hides anything typed or printed

on the screen.

CTRL-S or SPLITSCREEN

restores the split screen. You can see four lines of print, but part of the

turtle’s drawing may be hidden.

The World of the Turtle / 43

CTRL-T or TEXTSCREEN
shows you the full text screen. You can’t see any of the turtle’s drawing,

even though it is still there. To see the turtle again type CTRL-L or

CTRL-S.

Type these commands and watch what happens.

CLEARSCREEN

PENUP

LEFT 90

FORWARD 100

RIGHT 90

PENDOWN

RCIRCLE 100

CTRL-L
CTRL-S
CTRL-T
CTRL-S

Figure 2.33: The screen as it appears after the FULLSCREEN (b), SPLITSCREEN (c), and

TEXTSCREEN (d) commands.

One nice thing about CTRL-L, CTRL-S, and CTRL-T is that you

can use them at any time, without pressing RETURN. If you use

FULLSCREEN, SPLITSCREEN, or TEXTSCREEN, however, you must

use RETURN in the normal way. If you type a turtle command such as

FD 50 while in textscreen mode, the computer will immediately shift to

splitscreen mode.

!

44 / The World of the Turtle

ilELm& HUT

The HOME command always moves the turtle to the center of the screen, regardless of

where it was before. This behavior is different than that of commands like FORWARD,

BACK, RIGHT, and LEFT, which are based on the turtle’s current position.

Logo has other commands that, like HOME, refer to fixec/ positions on the screen.

Commands SETX, SETY, and SETPOS move the turtle to a new position on the screen based

on a Cartesian X and Y coordinate system. Other commands, XCOR and YCOR, output the

values of the turtle’s current X and Y positions. SETHEADING changes the turtle’s heading to

a fixed value, and HEADING outputs the value of the turtle’s current heading.

Although these commands can be useful for certain purposes, they have been left out of

this chapter because the most powerful ideas in turtle geometry come from learning to use the

relative turtle commands. Fixed coordinate turtle commands are introduced when they are

needed for specific activities in later chapters. HEADING is first used in connection with

conditional commands in Chapter 7. SETHEADING, SETPOS, and Cartesian coordinates are

introduced first in Chapter 10, where they are needed for the SHOOT game.

I

i

t

46 / Special Turtle Activities: SHOOT and QUICKDRAW

CHAPTER 3

New Commands: none
LWAL Procedures Disk files used: "SHOOT, "QUICKDRAW

Special Turtle Activities: SHOOT and QUICKDRAW / 47

3 Special Turtle Activities:
SHOOT and QUICKDRAW

In this chapter you will learn to play a game called SHOOT and use a

drawing tool called QUICKDRAW. They will help you understand more

about using the turtle. SHOOT helps you learn about angles and distances.

QUICKDRAW lets you draw interesting designs with the turtle very easily.

SHOOT and QUICKDRAW are complicated Logo programs that you will

learn about later in this book. To use the programs, all you have to do is

read them from your LWAL Procedures Disk.

If you do not have a complete LWAL Procedures Disk yet, you can

ask an adult or an older friend who knows more about Logo to help you by

copying the procedures for you from Appendix 1. If you don’t have some¬

one to help you right now, you can read this chapter quickly and come back

to it later, after you have read about the procedures for SHOOT and

QUICKDRAW in Chapters 10 and 11.

mni& mt

SHOOT and QUICKDRAW are activities that should be used at an early stage of Logo

learning. In fact, they could be used by very young children to explore the world of the turtle

in a structured way. They are examples of what Seymour Papert calls microworlds in his
book Mindstorms. Microworlds are small learning environments which are fun for learners to

use and have important skills and powerful concepts embedded in them. An important part of

the art of being a successful Logo teacher is to be able to identify and create such

environments or to help learners create their own. Not all microworlds involve writing

programs. You have already encountered several in the exploration sections of this book.

If you want to provide these experiences for the people you are helping, you will have to

either order a copy of the LWAL Procedures Disk from the address given in Chapter 0 or

carefully copy the exact procedures given in Appendix 1. If you decide to copy the

procedures, you should first read Chapter 10 and Chapter 11, in which they are thoroughly

explained.

Section 3.1.
SHOOT: An Interactive

Turtle Game

Before you can play SHOOT, you will have to clear the computer’s

working memory by typing

ERALL RETURN

Then you will have to load the game procedures from an LWAL

Procedures Disk file called "SHOOT. Put the disk into the disk drive and

type

LOAD "SHOOT RETURN

After the disk drive clicks and whirs for a while, the logo ? prompt will

return.

48 / Special Turtle Activities: SHOOT and OUlCKDRAW

Here’s how the game is played:

1. Type

START RETURN

The computer will draw a target somewhere on the TV screen and

place the turtle somewhere else on the screen. Every time the game is

played the computer will put the target and the turtle at different

points.

2. Aim the turtle toward the target using RIGHT and LEFT commands.

3. When you think the turtle is pointing directly at the target, type

SHOOT RETURN

4. The computer will ask HOW FAR? You type a number. Then the com¬

puter will move the turtle the distance you type and show whether you

have hit the target. If you miss the target, the turtle goes back to its

original starting point and you can try aiming and shooting the turtle

again. That’s all there is to it.

I’ll show you how one game that I played worked out. I typed

START

The computer placed the target and the turtle on the screen as shown in

Figure 3.1.

Figure 3.1: The target and the turtle, after typing the START command.

Next I aimed the turtle. I had to estimate how far to turn it. I turned it

to the right 100 degrees by typing

RIGHT 100

Special Turtle Activities: SHOOT and QUICKDRAW / 49

0

4
Figure 3.2: The turtle turned right 100 degrees from its starting position.

It looked close, but not quite right, so I turned the turtle a little more

by typing

RIGHT 10

Figure 3.3: The turtle turned lO more degrees to the right.

Now it looked like it was heading straight at the target, so I was ready

to try a shot. I typed

SHOOT

and the computer printed

HOW FAR?

I estimated the distance and typed the number

100

4

50 / Special Turtle Activities: SHOOT and OUlCKDRAW

Figure 3.4: The results of the first shot.

My shot carried the turtle near the target, but not quite to it. The turtle

drew a line and returned to its original position. I had to aim and shoot all

over again. From the line drawn by the turtle, I could see that my first shot

had been too short and aimed just a little too far to the left. Since I had

turned the turtle right 110 degrees the first time (100 + 10), I needed to turn

it a little bit more to the right the second time, so I typed

RIGHT 120

Figure 3.5: The turtle turned right 120 degrees from its starting position.

I also needed to shoot just a little farther than 100, so I tried 125.

SHOOT

HOW FAR?
125

1

mLni& HUT

Special Turtle Activities: SHOOT and QUICKDRAW / 51

CONGRATULATIONS! YOU HIT THE TARGET.
IT TOOK YOU ONLY 2 SHOTS.

And that’s all there is to playing SHOOT. Try it a few times.

SHOOT provides a different way of helping someone learn Logo. Research with Logo at

MIT has shown that some people—young children in particular—need a lot of practice

estimating distances and angles before they can fully control the turtle and make it do what

they want. SHOOT focuses on these “basic skills” of turtle control.

A Logo learning environment can and should include activities carefully designed to offer

practice in skills which are themselves critical for success in Logo. Think of it as an

appropriate form of “computer-assisted instruction” that can easily be modified or extended

by a parent or teacher. Anyone who understands Logo can modify the program at a child’s

request. Seeing someone modify an advanced program can give a child a richer sense of what

programming is all about. It is one way of giving a child some control over the computer,

even though a more experienced programmer is needed to exercise that control.

I can image a nice synergistic project for a team of learners—one being an older, more

experienced programmer, anywhere from age ten to adult, the other a less experienced

learner, from age five or six on up. Starting with a game like SHOOT, they could work

together to modify it and make it more interesting to both of them. This could be a great

project for a class of sixth or seventh graders working with a class of second or third graders.

Some suggestions for modifying SHOOT are given in Chapter 10.

Playing SHOOT also offers an opportunity to introduce or reinforce the activity of

playing turtle. This form of SHOOT can be played outdoors or in a large room, with a real

person taking the part of the turtle and a circle drawn on the ground for the target. Every

element of the game can be simulated as a physical activity. The person playing the turtle can

be spun around as in “blind man’s bluff” to simulate the randomness of the turtle’s starting

point. Then other players can give right and left commands to the turtle and tell it how many
steps to take to hit the target.

As described in the helper's hint in Section 2.3, playing turtle in this way requires that

everyone agree on the words and numbers to be used to command the turtle. It will probably

take some practice before everyone agrees on how the game should be played with people.

The important thing is not to get the two games to be identical, but to set up a situation in
which the simulated SHOOT game reinforces the learning involved in the SHOOT
microworld, and vice versa, of course.

y

52 / Special Turtle Activities: SHOOT and QUICKDRAW

Section 3.2. QUICKDRAW lets you draw with the turtle very easily by typing single

QUICKDRAW: Drawing keys, F, B, R, and L. It also lets you give a name to a turtle drawing so that

with an “Instant” Turtle you can redraw it any time you want.
Before you can use QUICKDRAW, you have to type ERALL to clear the

computer’s working memory. Then load a file called "QUICKDRAW from

your LWAL Procedures Disk. (If you don’t yet have a complete LWAL

Procedures Disk, read the beginning of this chapter to find out what to do.)

ERALL RETURN
LQAD "QUICKDRAW RETURN

QUICKDRAW lets you command the turtle using only four keys. Here’s

how it works. To start, type

QD RETURN

Then to draw with the turtle you can use single keys. Do not type

RETURN.

F moves the turtle forward 20 turtle steps.

B moves the turtle back 20 turtle steps.

R turns the turtle right 30 degrees.

L turns the turtle left 30 degrees.

To stop drawing and give your picture a name, type

E

The computer will then print

PLEASE CHQQSE QNE WQRD AS A NAME

FQR THIS DRAWING

TQ FORGET IT, JUST TYPE RETURN

You type a name—any one word name you like—for this drawing.

Then press RETURN. The computer will remember the name of your draw¬

ing.

Try this. Make a silly drawing using F, B, R, and L. When your draw¬

ing is finished, type E and give your drawing the name SILLY.

\J

You can pick any name you want for your drawing. I just chose the

name SILLY for this example. 1 could have called it DAN (that’s my name)

or HARRIET (maybe that’s your name) or BOX (if it was shaped like a box)

or even XQD999 (if I wanted to be really silly).

IMA

i

i
1

I

Special Turtle Activities: SHOOT and QUICKDRAW / 53

To redraw the drawing named SILLY, just type

RD :SILLY RETURN

mrMJL

The : symbol is very important in Logo. RD rSILLY tells the computer

to redraw the drawing whose name is SILLY. If you forget to type the : in

:SILLY or leave a space after the : (; SILLY), Logo will complain.

cxMMArm

You can use QUICKDRAW to draw almost any drawing or design that

you can think of. Here are a few ideas to get you started.

• Make simple shapes in different sizes, like squares or triangles.

A

Figure 3.7: Squares and triangles made with QUICKDRAW.

• Make a design by turning the turtle and redrawing a shape. Repeat this

over and over until your design is complete.

Figure 3.8: A design made by repeatedly drawing squares and turning the turtle.

N

54 / Special Turtle Activities: SHOOT and QUICKDRAW

• Use PENUP and PENDOWN to redraw the shapes in different parts of

the screen. Put shapes together to make a cartoon face.

Figure 3.9: Shapes drawn on dififerent parts of the screen.

Figure 3.10: Shapes arranged into a cartoon face.

i

I

i
I

(
I

I

• Make a random shape without planning it. Give it a name and then

redraw it several times in a row. You can make some really interest¬

ing designs this way.

Figure 3.11: A random shape and the design made by repeating it.

Special Turtle Activities: SHOOT and QUICKDRAW / 55

• Look ahead to some of the drawing ideas in Chapters 5 and 6. See if

you can draw them using QUICKDRAW.

The QUICKDRAW microworld contains—in limited form—many of the major concepts

involved in learning with Logo:

• Controlling the turtle—making it move forward and back and turn right and left.

• Naming a picture and using that name to redraw it.

• Building a complex shape out of simple building blocks.

• Repeating a design until it closes.

QUICKDRAW is introduced here for three reasons. First, it is a learning environment

for young children who may not be ready to work with the more complex Logo command
structure. The procedures names, QD for QUICKDRAW and RD for REDRAW, are kept short

on purpose to minimize any typing. If a family includes children with a range of ages and
abilities, QUICKDRAW allows the younger ones to be involved in the same kinds of activities

as the older ones. Second, it is a quick way to introduce some turtle drawing ideas that will

be developed much more fully in Chapters 5 and 6. Third, it is an example of an intermediate

Logo project which is explained in detail in Chapter 11. (Chapter 11 also contains a number of

suggestions for extending and modifying QUICKDRAW.)
If you are helping a very young learner—someone between three and six, perhaps for

whom the full Logo command structure is too complex right now, you might want to use the

extended version of QUICKDRAW given in Chapter 11. Another alternative might be to use

j n the INSTANT program described in Harold Abelson’s Apple Logo.
I QUICKDRAW makes an excellent collaborative project for a younger and an older learner

I ■ Qj- a teacher to work on together. The younger learner could suggest ideas for improving

I QUICKDRAW, and the older learner or teacher could implement them (after he or she has

i M read Chapter 11). ^ j .
■ I want to add a couple of cautionary notes here. QUICKDRAW is not intended to be any

■ B l^ind of “ultimate” Logo environment for young children. First of all, I think such an environ-

1 ment is best created by children and adults together, as described above. Also, making

! M QUICKDRAW more elaborate would have conflicted with my goal of using it as an intermedi-

1 I ate project, as a model of how to begin the process of creating a microworld,
j B QUICKDRAW is just powerful enough for a learner to do something meaningful as an in-

I troductory activity. But it is not so wonderful that someone will want to stay with it forever. I

.1 « think it is important to go on from QUICKDRAW to Logo itself. It is designed to be an appe-

j fl tizer but not an entire meal. _

1
i

J

56 / Teaching the Computer

CHAPTER 4

Short
Command Form

TO
END
EDIT ED
PO
POTS
POALL
ERASE ER
ERALL
SAVE
LOAD
CATALOG
ERASEFILE
.PRINTER

Examples With Inputs

TO BOX

EDIT "BOX, ED "BOX
PO "BOX
POTS

ERASE "BOX, ER "BOX

SAVE "CIRCLES
LOAD "CIRCLES

ERASEFILE "OLDSTUFF
.PRINTER 1, .PRINTER 0

LWAL Procedures Disk files used: "PRINTSCREEN.S, "PRINTSCREEN.G

New tool procedures used:

Tool Procedure Examples

PRINTSCREEN PRINTSCREEN, PS
PRINTSCREEN.E PRINTSCREEN.E, PSE
PRINTSCREEN.BIG PRINTSCREEN.BIG, PSB
PRINTSCREEN.BIG.E PRINTSCREEN.BIG.E, PSBE

Teaching the Computer / 57

4 Teaching the Computer

A command that you teach the computer is called a procedure. In this

chapter you will use the Logo screen editor to teach the computer

new commands. You will also learn how to save procedures in 3. file on a

Logo work disk and how to use a printer to make hard copy printouts of

Logo procedures and pictures.
From now on you will be teaching the computer new commands all the

time and saving them on a disk. After reading this chapter once carefully,

you may need to read parts of it again as you use the rest of the book.

You will need a Logo work disk and your Logo journal. Appendix II

tells you how to create a Logo work disk if you do not already have one.

Section 4.1.
Teaching the Computer

How to BOX

You probably already know how to make the turtle draw a square box

on the TV screen. (If not, read Chapter 2 again.) Using a computer would

get very boring if you had to type in a long series of commands every time

you wanted it to draw a box. Logo helps you teach the computer new

commands so that you don’t have to do this. This is sometimes called

writing a computer program or just programming. Let’s teach the computer

how to draw a box on its own.
First, draw a square with the turtle. You should see something like

Figure 4.1 on your TV screen.

Figure 4.1: A simple square drawn by the turtle.

Pick a name for this shape. You can pick any name you like that is not

already a Logo command. I’ll choose BOX, because the shape looks like a

box. You can pick any name you want: JOHN, CHRISTINA, MOMMY, ME,

ET, R2D2, X034, or whatever. Now type the name you picked and press

RETURN.

58 / Teaching the Computer

BOX RETURN

Logo will complain

I DON’T KNOW HOW TO BOX

Figure 4.2: Logo complains that it doesn’t know how to BOX.

You will have to teach the computer how to BOX. There are two ways

to do this. The first way is to use the Logo command TO and type the fol¬

lowing:

TO BOX

> FORWARD 50

> RIGHT 90

> FORWARD 50

> RIGHT 90

> FORWARD 50

> RIGHT 90

> FORWARD 50

> RIGHT 90

> END

The first line, TO BOX, tells the computer that you are teaching it a

new command called BOX. The next eight lines are the instructions for

how to BOX. The > symbol is a special prompt that the computer prints in¬

stead of the usual ?. This reminds you that you are teaching the computer a

new command. The last line, END, tells the computer that you are finished

teaching it how to BOX.

Now let’s work through the example step by step. Type each line and

read the comments.

Teaching a New Command
Using the Logo Screen
Editor

mrm

Teaching the Computer / 59

TO BOX RETURN

The computer will print this prompt:

>

and wait for you to type a command. It won’t do anything, however.

Instead, it will just store each command you type until you finish teaching

it by typing END.
Now type the rest of the commands one at a time.

> FORWARD 50 RETURN
> RIGHT 90 RETURN
> FORWARD 50 RETURN
> RIGHT 90 RETURN
> FORWARD 50 RETURN
> RIGHT 90 RETURN
> FORWARD 50 RETURN
> RIGHT 90 RETURN
> END RETURN
BOX DEFINED

After you type the command END, the computer knows you are finished

and prints the message, BOX DEFINED.
BOX is now a Logo command. Just like the others you already know.

To use the command, type

BOX RETURN

A small square just like the one in Figure 4.1 should appear on the screen.

If BOX does not do what you expected, you may have made a typing

mistake. If so, you can start over and teach the computer to BOX again.

Or you can edit BOX, using the Logo screen editor.

The second way to teach the computer new commands is using the

Logo screen editor. Typing mistakes are easy to fix with the screen editor.

Let’s work through the same example, using the editor.

First, erase the BOX procedure by typing

ERASE "BOX RETURN

To start using the editor, type

EDIT "BOX RETURN

When you type ERASE "BOX or EDIT "BOX, be sure to type a " sym¬

bol before the word BOX, but not after it. If you type EDIT BOX and forget

the ", or leave a space after the " (EDIT " BOX), Logo will complain.

When you type EDIT "BOX, the computer will clear the screen and en¬

ter edit mode, as shown in the figure. When the computer is in edit mode,

you can type in anything you like. The computer just stores the information

and doesn’t do anything until you leave the edit mode.

60 / Teaching the Computer

Figure 4.3: The computer screen as it appears in edit mode.

TO BOX appears at the top of the screen. Now type the rest of the

commands, one at a time.

FORWARD 50 RETURN
RIGHT 90 RETURN
FORWARD 50 RETURN
RIGHT 90 RETURN
FORWARD 50 RETURN
RIGHT 90 RETURN
FORWARD 50 RETURN
RIGHT 90 RETURN
END RETURN

The screen will now look like the one in Figure 4.4.

Figure 4.4: The screen as it appears after the BOX procedure has been typed in edit mode.

Use the arrow keys and CTRL-B key to correct any typing mistakes.

Even though you just typed END, you haven’t quite finished teaching

the computer how to BOX. To leave edit mode, type CTRL-C. (Hold down

the CTRL (“control”) key and then press the C key.) The computer will
now print

Teaching the Computer / 61

BOX DEFINED

Figure 4.5: The screen as it appears after BOX has been defined.

mFAU

It is very common for people to forget to type CTRL-C when they are

finished teaching the computer. Any commands you type while in edit mode

will not be carried out until you return to command mode by typing

CTRL-C.

The illustrations in Figure 4.6 show what happens when you type EDIT

"BOX.

Figure 4.6ai Logo calls on EDIT and tells it the name of the new command, BOX.

62 / Teaching the Computer

Figure 4.6b: EDIT stores all the commands you type and any changes that you make.

Figure 4.6c: When you type CTRL-C, EDIT gives the completed procedure back to Logo.

Figure 4.6d: Logo stores the instructions where they can easily be found again.

Teaching the Computer / 63

Figure 4.6e: When you type the command, BOX, Logo calls BOX, giving it the new

instructions.

After leaving edit mode by typing CTRL-C, you will be back in Logo
command mode, the normal mode in which Logo carries out the commands
you type. Now type the command BOX. You should see this drawing on the

screen:

Figure 4.7: A box drawn by typing the new command BOX.

If your procedure does not do what you expected, type

EDIT "BOX RETURN

This returns you to edit mode. Use the arrow keys and CTRL-B to cor¬
rect any errors. Type CTRL-C when you have corrected all your errors.

Now type the command BOX again.

64 / Teaching the Computer

BOX is now a Logo procedure and can be used just like any other Logo

command. You have begun to create your own computer language!

nWEXm IAEA

If you want to SAVE the box procedure on a disk, Section 4.3 of this

chapter will tell you how. Chapter 5 shows how you can use BOX as a suh-

procedure in teaching the computer more new commands. You can use

BOX as a basic shape to make many other designs, as shown in Figure 4.8.

Figure 4.8: Designs made using the BOX procedure.

mnf& Him

Because some people get confused about the difference between command mode and edit

mode, Apple Logo has provided two ways of teaching the computer a new command. For

these learners, it may be easier to start using TO and to type each command without having

to think about the edit mode. However, people should move on to the editor as soon as
possible.

For most other versions of Logo, TO and EDIT do exactly the same thing. They shift the

computer to edit mode. When I teach Apple Logo, 1 prefer to use edit mode and the EDIT

command from the start, even if it is a bit more difficult to use the " symbol and to learn a

strange new word, EDIT. There are two reasons for this: (1) beginners often make typing

errors and have to start all over or switch to the edit mode in order to correct them; (2) using

the editor is one of the most important parts of using Logo and so it helps to start using it
right away. Fve seen children as young as 5 or 6 learn to use the editor.

Teaching the Computer / 65

Ways to Examine Your You can print a list of all the steps in the procedure TO BOX by typing

Work
PO "BOX

PO stands for printout.

This will show the procedure on the screen. If you can’t see the entire

procedure printed on the screen, type CTRL-T, which shows you the entire

text screen. Later, type CTRL-S to return to the normal split screen.

Figure 4.9; If you can't see the entire procedure after typing PO "BOX (a), type CTRL-T to

see the entire text screen (b); then return to a normal split screen by typing CTRL-S (c).

To printout all your procedures, type

POALL

The Logo command POTS will print out the titles (names) of all your

procedures. POTS is the short form of PRINTOUT TITLES.

If you want to ERASE a procedure completely, you can type

ERASE "BOX

or

ER "BOX

You can also erase all your procedures from the computer’s memory

by typing

ERALL

66 / Teaching the Computer

mFAU
Section 4.2.
Using the Logo Screen
Editor

The Basics of Editing

Direction Keys to Move the
Cursor

Basic Editing Keys to
Change the Text

Be careful. Never type ERALL unless you have saved your procedures

on a disk or unless you are really and positively sure you don’t want them.

Section 4.3 tells how to save your procedures on a disk.

The Logo screen editor gives you an easy way to type in a new proce¬

dure or change an old one. It may take you a little while to get used to us¬

ing the editor because it works a little differently than Logo command

mode.

There are a few special words that make it easier to talk about how the

Logo screen editor works. The letters, numbers, and symbols that you type

on the screen are called characters. Everything typed on the screen at any

one time is called the text. Remember that the cursor shows you where the

next character will be typed on the screen. Four direction keys let you

move the cursor to any point in the text. You can do all the editing you

need with the four direction keys, the REPT key, the RETURN key, and the

ESC key.

-► or CTRL-F
moves the cursor right one space.

CTRL-B
moves the cursor left one space.

CTRL-P

moves the cursor up one line. (“P” stands for “previous line.”)

CTRL-N
moves the cursor down one line. (“N” stands for “next line.”)

erases the character to the left of the cursor and backspaces the cursor.

RETURN

creates a new line and moves the cursor down to the beginning of that new

line.

REPT

if you have an Apple II plus, repeats the effect of the key you just typed.

For example, to move the cursor across the screen to the right, first press

then keep holding the key down while pressing the REPT key. If

you have an Apple He, holding any key down for a while will cause it to re¬
neat.

Teaching the Computer / 67

EXHMUirJMr

Practice using the editor. Type EDIT "BOX and practice making

changes to the BOX procedure. Don’t worry about messing it up—you can

always fix it later. Try some of the following suggestions.

• Change one of the lines in BOX. Leave the editor by typing CTRL-C.
Try out the new BOX procedure to see what happens, then edit BOX

again and return it to the way it was before.

• Change all the inputs to FORWARD from 50 to another number. Try

the procedure and see what happens.

• Change all the angles in BOX from 90 to another number. Try the pro¬

cedure and see what happens.

• Change the name of the procedure from BOX to something else. Type

the new name and see what happens. Type BOX to see what happens.

Then type POTS to see the names of all the procedures you have

taught the computer.

• Edit BOX again to make it just as it was before you started experiment¬

ing with the editor.

j

I

[

HOMKS Him

Using the editor can be very tricky for any beginner. The most important thing to

understand is the function of the cursor. Anything typed on the keyboard will be inserted in

the text at the cursor and everything else will be moved over to make room for it. If

something is erased, the cursor will move back, and all the text to its right will be moved

back with it.
There are two kinds of operations involved in editing.

1. Moving the cursor without changing the text.

2. Changing the text by erasing something, typing new characters, or creating a new line.

Changing the text also moves the cursor.

Most beginners’ editing bugs come from confusing these two kinds of operations or not

understanding the function of the cursor. The following are some problems beginners often

run into:

• Using SPACE BAR instead of-^ to move the cursor to the right, or trying to use -► to

insert a space.

• Using RETURN instead of CTRL-N to move down one line. This happens because people

have the habit of typing RETURN at the end of every line. When you do this while edit¬

ing, you add a new line and move all the other lines down. When this happens by acci¬

dent it can be fixed immediately by pressing once.

• Not knowing where to put the cursor to erase or insert something.

People familiar with the computer language BASIC often experience another difficulty. In

BASIC, typing over an old line replaces it with new text. In Logo, text is inserted when you

type and the old text is moved over, not replaced.
Another common bug, unrelated to these, is forgetting to type CTRL-C to return to com¬

mand mode, after editing. . •
Logo has a large collection of editing commands to facilitate creation and editing or text.

However, I believe that people should learn as few as possible to begin with and then gradu¬

ally learn’others as they become familiar with the editor. All editing can be done with only

four keys,-^ and CTRL-B to move the cursor, and ◄- and RETURN to change the text. Us¬

ing-► at the right end of a line moves the cursor down. Using CTRL-B or ^ at the left end

of a line moves the cursor up.
All the other editing keys are ways of doing the same things faster and more convenient¬

ly. I show people how to use CTRL-N, CTRL-P, and REPT as soon as they learn the first

four. Other editing keys can be posted on a chart near the computer, and people can begin us¬

ing them whenever they feel comfortable with what they already know.
I also use some special terminology (jargon) to talk about editing. Words like character,

text, cursor, edit mode, and command mode help people make distinctions and think more

clearly about what they are doing, even though these words may seem strange at first.

68 / Teaching the Computer

More About Using the
Editor

More Editing Keys to Move
the Cursor

More Editing Keys to
Change the Text

Even More About Using the
Editor

There are several more editing keys that can make editing easier and

faster. Until you can easily use the basic editing keys, you should probably

skip ahead to Section 4.3, which teaches you how to save procedures on a

disk. When you want to learn more about editing, come back and read the

rest of this section.

CTRL-E
moves the cursor to the end of a line.

CTRL-A
moves the cursor to the beginning of a line.

CTRL-V

moves the cursor forward an entire screen when the screen is full of text.

ESC-V

moves the cursor backward an entire screen when the screen is full of text.

(Type ESC first; then, release it and type V.)

CTRL-D

erases the character at the cursor and does not backspace. “D” stands for

delete.

CTRL-K
erases the entire line to the right of the cursor. “K” stands for kill.

CTRL-0
creates a new line at the cursor and moves all the rest of the text down one

line. “O” stands for open a new line.

You can use the editor to teach the computer several procedures at

once. After typing END, go on to teach it something else. After each new

procedure, type END. When you are all finished, type CTRL-C.

If you type EDIT RETURN, without entering a procedure name, the

computer will return to edit mode with whatever was just edited on the

screen. If this is the first use of edit after using the turtle, the screen will be

blank.

Teaching the Computer / 69

Section 4.3.
Saving Procedures on a
Logo Work Disk

nmm ibea

You can edit several procedures at once. If you want to edit three pro¬

cedures called BOX, RACE, and STAR, you can type

EDIT [BOX FACE STAR] RETURN

If you want to learn even more about using the editor, read Harold

Abelson’s book Apple Logo or the Reference Manual that comes with your

Apple Logo Language Disk.

A computer has two kinds of memory. Its working memory contains

everything it remembers right now. Its permanent memory is stored on

disks and can be loaded into the working memory.

You can think of it this way—you have two kinds of memory, too.

^ There are things you remember right now—that’s your working memory.

Then there are things you write down so that you can remember them later,

or things you look up from a book. That’s your permanent memory.

I can’t remember more than a few phone numbers at any one time.

When I want to remember a new phone number I write it down in a little

booklet that I carry with me. There is also a printed phone book that has

thousands of phone numbers that I can look up whenever I want to, but I

can’t ever change those numbers.

The telephone numbers in my head right now are my working memory.

They are like a bunch of procedures that 1 have just taught the computer.

The phone numbers in my little booklet are my own personal permanent

memory. They are like procedures that I save on my own Logo work disk.

The numbers in the public telephone book are shared permanent memory. I

can use them, but I can’t change them. They are like the instructions for

Logo that I can load into the computer’s working memory from the Logo

Language Disk whenever I want to. The Logo computer language is a form

of shared permanent memory.

Figure 4.10: Three different kinds of memory.

Once you have taught the computer some procedures, you will want to

save them on a Logo work disk. If you do not already have a Logo work

disk, Appendix II tells how to create one.

Logo has several special commands for storing information in files on a

Logo work disk.

SAVE "SALLY
saves all the procedures in the computer’s working memory on the Logo

work disk in a file named "SALLY.

LOAD "SALLY
reads all the procedures from the file named "SALLY and puts them into the

computer’s working memory.

CATALOG
prints a list of all the files stored on the Logo work disk.

ERASEFILE "SALLY
erases the file named "SALLY from the Logo work disk. Never erase a file

without being absolutely sure either that you don’t need the information any

more, that you have saved it somewhere else, or that you are about to save

an improved version of that file.

Here’s how filing works. First you choose a name for your file. A good

file name to start with is your own name. You can save a lot of different

procedures in that one file. To save procedures in a file, make sure your

Logo work disk is in disk drive number I (if you have two) and the door is

closed. See Figure 4.11.

Figure 4.11: Inserting the Logo work disk into the disk drive.

Then type:

POTS RETURN
to see the list of procedures that are about to be saved and then

SAVE "SALLY RETURN
if your name is Sally.

The red light on the disk drive will come on, and the drive should make

soft clicking sounds. When you see a ? prompt again, the computer will be

ready for new commands.

Teaching the Computer / 71

mFAU

Be sure to type the " symbol before the file name without a space be¬

tween the " and the name. Do not type " after the name as you do in ordi¬

nary English. Type "SALLY, not " SALLY or "SALLY".

If this process does not seem to be working properly, make sure that

the disk is correctly inserted in the disk drive, with the door closed, and

that you were using a properly initialized Logo work disk. If you still have

trouble, ask a more experienced person for help.

Now type the Logo command

CATALOG

The computer will print a list of all the file names on the disk. All of

the files that contain Logo procedures will have “.LOGO” after their names.

7CATAL0G

DISK VOLUME 234

T 6 STARTUP.LOCO

Figure 4.12: The screen showing file names in response to the CATALOG command.

A file on a disk is like a file folder in a file drawer. The folder holds

many papers. Each paper has one procedure written on it. A file drawer can

have many file folders in it, and each file would have a different name so

that you can find it when you need it. In the same way that many different

people can keep files in the same drawer, many different people can store

files on the same disk.

msm. lacA

0

Figure 4.13: A Logo work disk is like a file cabinet filled with different file folders.

If your new file name appears on the screen when you type CATALOG,

your procedures have been saved on the disk. You can now read them from

the disk whenever you need them. Try typing this series of commands:

POTS
reminds you which procedures you just saved.

ERALL

clears the computer’s working memory.

POTS
shows no list of procedures this time—you just erased them!

LOAD "SALLY

or whatever file name you used.

Now your procedures should be back in the computer’s working mem¬

ory. Find out for sure by typing

POTS

Whenever you start work, type LOAD to read the file you want to

work on. At first, it should be the one with your own name. Here is a good

procedure for you to follow:

1. When you start work type ERALL to clear the computer’s working

memory.

2. Read your file by trying LOAD "SALLY (or whatever file name you are

using).

3. After teaching the computer a new procedure and testing it, type

ERASEFILE "SALLY (using your own name, of course) to clear the old

file from the disk. Then save your new procedures by typing SAVE

"SALLY. In this way you will save all your procedures as you go along.

Teaching the Computer / 73

mFAU

WARNING! If you don’t LOAD your file when you start work, your old

procedures may be accidentally erased when you save new ones in your files.

If you load a file first, before saving anything, then your old procedures will

be saved along with any new ones or any changes you have made.

When you are all finished working, type ERALL to clear the computer’s

working memory for the next person.

mnfd Him

Filing procedures on a disk is a difficult process for some people to understand. I find it

helpful to stress the idea of two kinds of memory. Short-term or working memory includes the

things that Logo actively remembers at the present moment; long-term or permanent memory

includes things that Logo doesn’t actively remember but will recall when given the

instructions detailed in this section.
I have found the analogies to the telephone book and the file cabinet very useful in

helping learners of all ages understand filing. However, there is one major difference between

computer files and someone’s personal booklet of phone numbers. When you save procedures

on a disk, the computer makes a copy of everything in the working memory and stores it on

the disk. The contents of the working memory are not changed by saving it on the disk. When

you load a file, you make a copy of the entire file and place it in the working memory. The

information stays in the file also, until you save some other information by erasing the old file

and using the same name. This is why it is so important to load the old file before starting

work. In this way the working memory already contains the old information before any

changes or any new procedures are saved.
Despite this kind of precaution, material does sometimes get lost. This is a good reason

for keeping hard copy, that is, printed files as well. Section 4.4 tells how to print Logo

information on paper with a printer. It’s also a good idea to make a back-up copy of an entire

disk from time to time. The process of copying disks is explained in Appendix II.

More About Filing You can skip this part for now. Come back to it when your working

memory begins to be filled up by procedures or you are ready to create sep¬

arate files for separate projects.

Just as you would probably keep difficult kinds of papers in different

file folders with different names, you can also store computer information in

many different files. When you have taught the computer a lot of proce¬

dures, you may want to use more than one file name. Each file should con¬

tain a group of procedures that go together in some way. The group can

contain all the procedures needed for a particular drawing (see Chapter 6)

or a group of procedures that all make similar designs (see Chapter 5).

Once you begin to have separate files for different projects, you will

probably want to keep them as separate as possible. Each time you begin

work on a new project, choose a file name for it. Use that name every time

you save that group of procedures. When you work on that same project

again, start by loading the file before you save anything. Before starting to

work on a different project, clear the working memory by typing ERALL.

Then read the file for your next project before starting to work on it.

74 / Teaching the Computer

Section 4.4.
Printing Procedures and
Pictures with a Printer

Appendix II explains even more about using Logo files. It tells how to

save groups of procedures in “packages” and gives more suggestions about

files and file names. To learn still more about Logo files, read Chapter 4 of

Harold Abelson’s book, Apple Logo, and the Reference Manual that comes

with Apple Logo.

If you have a printer connected to your Apple computer, you will be

able to print your procedures on it and maybe even print copies of Logo

turtle drawings.

Make sure your printer is turned on. The special command .PRINTER
is used to send information to the printer. .PRINTER needs an input telling

which slot the printer is plugged into. If it is plugged into slot 1, type

.PRINTER 1

This will start the printer. (If the printer were plugged into slot 2, you’d

type .PRINTER 2, etc.). Normal Logo printing commands will now print

things on the printer paper instead of on the TV screen.

PRINT [HELLO, HOW ARE YOU]
will print the sentence HELLO, HOW ARE YOU on the printer.

POTS
will print a list of all your procedures.

PO "BOX
will print out the commands in the procedure named BOX.

POALL
will print out all the commands in all your procedures.

CATALOG
will print a list of all the files on your disk.

.PRINTER 0
will turn the printer off and make the computer print on the screen again.

WARNING! If you use an incorrect input for .PRINTER, that is, a num¬

ber that is not the correct slot for the printer, Logo will crash. To avoid los¬

ing all your procedures, it’s a good idea to save them on a disk before using

the printer.

nrmu

Teaching the Computer / 75

Printing Pictures

with a Silentype
Printer

Printing Pictures
with an EPSON
Printer

Some printers can print pictures directly from a TV screen. If you have

a Silentype printer made by the Apple Computer Company, you can print

pictures by typing

.PRINTER 1

PRINT CHAR 17

.PRINTER 0

The first line, .PRINTER 1, turns on the printer (assuming it is plugged

into slot 1). The middle line, PRINT CHAR 17, is a “magic word” which

tells the printer to print the screen picture. The last line, .PRINTER 0, turns

the printer off.

If you load a file called "PRINTSCREEN.S from your LWAL Proce¬

dures Disk, you can use a procedure called PS (short for PRINTSCREEN).

If you do not yet have a complete LWAL Procedures Disk, you can copy

the procedures from Appendix 1.

PS or PRINTSCREEN will print pictures as dark as possible and will

reverse the screen image so that the pictures are printed as black lines on

the white paper (rather than white on black as they are on the TV screen).

The Logo illustrations in this book were made using an EPSON MX-80

printer with a Grappler interface board supplied by Orange Micro, Inc. If

you have this equipment, you can print pictures using some procedures on

the LWAL Procedures Disk. Read a file called "PRINTSCREEN.G from the

disk or copy the procedures from Appendix 1. The following eight proce¬

dures are in this file.

PS or PRINTSCREEN

will print a regular copy of the picture on the screen.

PSE or PRINTSCREEN.E

will print an enhanced or darker copy of the picture on the screen.

PSB or PRINTSCREEN.BIG

will print a larger copy of the picture on the screen. The picture will also be

rotated to make room for it on the paper.

PSBE or PRINTSCREEN.BIG.E

will print a big enhanced copy of the picture on the screen.

Making hard-copy printouts of Logo procedures and pictures adds an important

dimension to a Logo learning experience. Having printed procedures to paste in a journal or

pictures to post on a bulletin board or pass around can make a huge difference in helping

someone enjoy using a computer and understand what he or she is learning.
In a school, you don’t have to have a printer with every computer. One printer in a

school library is enough to allow many students to print out their work. If you don’t have

your own printer, it would be worth trying to borrow one. Some computer stores allow

regular customers to use a printer in the store from time to time.

mini& mt

CHAPTER 5

Command

REPEAT

Short

Form Examples With Inputs

REPEAT 4 [FORWARD 20 RIGHT 90]

LWAL Procedures Disk files used: "CIRCLES
New tool procedures used: none.

Turtle Projects 1: Designs / 77

Turtle Projects 1: Designs

In this chapter you will see examples of many different designs drawn by

the turtle that you can copy or change. You’ll also learn how to use pro¬

cedures and subprocedures to invent your own.

This chapter can be read quickly for its ideas or worked through very

slowly as a source of design ideas for many turtle projects. Don’t be sur¬

prised if something is harder to do than it looks. At the same time, don’t be

afraid to try something that looks hard at first. Many designs are really a lot

simpler than they look, if you build them using the right pieces.

Figure 5.1: Sample designs drawn by the turtle.

Section 5.1.
Procedures and
Subprocedures

A command that you teach the computer is called a procedure. A pro¬

cedure can be used just as if it were a built-in Logo command. When one

procedure is used as part of another procedure, it’s called a .v/z/tprocedure.

Look at the design made of squares in Figure 5.2.

Figure 5.2: A “star” made of rotated “windows.”

If you have already taught the computer how to draw a square, this can

be a very simple project. If you haven’t already taught the computer how to

square, teach it this procedure now.

TO SQUARE

FORWARD 50

RIGHT 90

FORWARD 50

RIGHT 90

FORWARD 50

RIGHT 90

FORWARD 50

RIGHT 90

END

Figure 5.3: A square drawn by the SQUARE procedure.

The SQUARE procedure is made by repeating FORWARD 50 RIGHT

90 until the turtle gets back to where it started. SQUARE can now be used

to build BOXES.

TO BOXES

SQUARE

LEFT 90

SQUARE

LEFT 90

SQUARE

LEFT 90

SQUARE

LEFT 90

END

i V

Figure 5.4: The design drawn by the BOXES procedure.

Turtle Projects 1: Designs / 79

BOXES is made by repeating SQUARE LEFT 90 until the turtle gets

back to its starting point. BOXES can now be used to make STAR.

TO STAR

BOXES

RIGHT 45

BOXES

END

Figure 5.5: The design drawn by the STAR procedure using BOXES as a subprocedure.

\J

Building things with subprocedures is one of the most important, use¬

ful, and powerful ideas you can learn with Logo. If you tried to make the

turtle draw STAR without using SQUARE and BOXES as subprocedures, it

would be a long, complicated project. Using subprocedures makes it easy to

do and easy to understand. Because each subprocedure is short and be¬

cause the names make it clear what each subprocedure does, it would also

be easy for someone else to understand how to do this.

fmmiKA

Figure 5.6a: Using subprocedures makes complicated designs simpler.

80 / Turtle Projects 1: Designs

Figure 5.6b: Without subprocedures, the procedure would be more confusing.

EKfURKm

Many other shapes that look hard at first can be drawn easily by using

subprocedures. See if you can use squares to make some designs like this;

Figure 5.7: Designs made with squares.

HELKId HWT

Many of these designs can be drawn even more easily using REPEAT or recursion, which

are introduced in Section 5.3 and Section 5.4. They are shown here without those techniques

in order to help build a rationale for them. If learners ask for an easier way to make the

computer repeat things, you could refer them directly to those sections.
The concept of a subprocedure is one of the most important ideas in Logo and is part of

what makes Logo so much easier to learn than many other computer languages. As a

programmer you create your own language and use the commands you create to make the

computer do new things that would have been much more difficult without your specific

language. Since each procedure is an independent entity, you can use it as part of many

different projects. You can even use a procedure as a suhprocedure of itself. This may sound

paradoxical, but it turns out to be a very powerful idea that makes lot of programs easier. See

the description of recursion in Section 5.4.

Turtle Projects 1; Designs / 81

Section 5.2. A regular shape is one with all its sides and angles equal. A square, for

Regular Shapes example, is a regular shape. To make a square with the turtle, you make it

repeat FORWARD 50 RIGHT 90 until it is back to its starting place. By us¬

ing different angles, many other shapes can be made this way. For example,

you can begin to build a star by typing

FORWARD 50

RIGHT 150

FORWARD 50

RIGHT 150

Figure 5.8: Steps in building a star.

Keep repeating FORWARD 50 RIGHT 150 until the shape is complete.

Then give it a name and teach it to the computer.

EKtmKtm

Make a mirror image of the star in Figure 5.8, turning the turtle LEFT

150 every time. Make other shapes by starting with different angles.

You can use the same idea to make a regular triangle—one with three

equal sides. The hardest part will be figuring out what angle to use. See if

you can find the angle by experimenting. Use what you already know about

angles and regular shapes. A turtle turn of 90 degrees would be too small to

make a triangle.

FORWARD 50 RIGHT 90

FORWARD 50 RIGHT 90

FORWARD 50 RIGHT 90

<
Figure 5.9: Three 90-degree turns do not make a triangle.

82 / Turtle Projects 1: Designs

A turn of 150 degrees would be too big.

FORWARD 50 RIGHT 150

FORWARD 50 RIGHT 150

FORWARD 50 RIGHT 150

Figure 5.10: Three 150-degree turns don’t make a triangle either.

The exact answer will be somewhere between the 90 and 150 degrees

that you’ve already tried. Repeat this process with different angles until you

get the turtle back to its starting place in exactly three steps.

nrmu

When you get very close to the correct angle, it might be very hard to

see whether the two ends meet exactly. You will be able to see the ends of

the lines more clearly if you hide the turtle.

Figure 5.11: Hiding the turtle will make it easier to see if your triangle is complete.

Section 5.3.
Using the REPEAT

Command

The Logo command REPEAT makes the computer repeat a list of com¬

mands as many times as you want. REPEAT is very useful when you al¬

ready know how many times to repeat something:

REPEAT 4 [FORWARD 20 LEFT 90]

REPEAT 12 [SQUARE RIGHT 30]

r
Turtle Projects 1: Designs / 83

REPEAT needs two inputs. The first is the number of repeats. The sec¬

ond is a list of commands to repeat. In Logo, a list is always typed within

square brackets, [and].

mrm

[and] are not marked on the keyboard of the Apple II plus. To type

them, use SHIFT-N and SHIFT-M. If you have an Apple He, be sure not to

use SHIFT when you type [and].

REPEAT can be used for procedures like SQUARE and BOXES from

Section 5.1.

TO SQUARE 1

REPEAT 4 [FORWARD 50 RIGHT 90]

END

TO BOXES1

REPEAT 4 [SQUARE1 LEFT 90]

END

TO STAR1

REPEAT 2 [BOXES1 RIGHT 45]

END

,i

!

!

Figure 5.12: Shapes drawn using the REPEAT command.

REPEAT is also very useful for regular shapes like stars or triangles.

TO STAR 150
REPEAT 12 [FORWARD 100 RIGHT 150]

END

TO TRIANGLE
REPEAT 3 [FORWARD 80 RIGHT 120]

END

V

84 / Turtle Projects 1: Designs

Figure 5.13: A star and triangle drawn using the REPEAT command.

REPEAT can also be used when you want to find the angle needed for

a particular shape. For example, what angle would you use to make the tur¬

tle draw a five-pointed star like the one in Figure 5.14?

Figure 5.14: A five-pointed star.

You can use REPEAT to make the question easier to answer. Keep us¬

ing REPEAT with the same forward step and different angles.

REPEAT 5 [FORWARD 50 RIGHT something]

First make an estimate of what the angle might be. Look at the first

turn. It is bigger than 90 degrees, which would make a square, but less than

180 degrees, which would turn the turtle all the way around.

p>

Figure 5.15: The correct angle is between 90 and 180 degrees.

Pick one angle to start with, say 120 degrees, and then keep increasing

the angle until your shape closes.

REPEAT 5 [FORWARD 80 LEFT 120]

Turtle Projects 1: Designs / 85

Figure 5.16: A turn of 120 degrees is too small.

REPEAT 5 [FORWARD 80 LEFT 130]

Figure 5.17: A turn of 130 degrees is still too small.

REPEAT 5 [FORWARD 80 LEFT 140]

Figure 5.18: A 140-degree turn is getting close.

This looks pretty close. If you make the turn a little larger, the shape

might close.

REPEAT 5 [FORWARD 80 LEFT 150]

Figure 5.19: A 150-degree turn is too much.

86 / Turtle Projects 1: Designs

MTMU

EXnMJffUH

This time the last side crossed the first one, so a turn of 150 degrees is

too big. Now see if you can finish the problem. The angle needed for a five-

pointed star is between 140 and 150 degrees. Try to find it yourself.

When your angle gets very close, it might be hard to see whether the

two ends meet exactly. Hide the turtle so you will be able to see the ends of

the lines more clearly.

Figure 5.20; Hide the turtle so you can see more clearly whether the ends meet.

Here are some activities that you can try with REPEAT.

• Use REPEAT to make designs that use squares, stars and triangles as

subprocedures.

Figure 5.21: Designs made by using REPEAT.

• Make mirror image shapes using REPEAT. Make a square with the

turtle turning to the right, then another square with the turtle turning to

the left. Do the same thing with triangles and stars for which the turtle

turns both left and right.

Turtle Projects 1: Designs / 87

HELfEki HIMT

Figure 5.22: Shapes with their mirror images.

• Make other regular shapes, like a six-sided polygon or an eight-pointed

star.

Figure 5.23: Polygons and stars made with REPEAT.

The five-pointed star example given above illustrates one systematic way to solve a type

of problem common in turtle geometry. At least three powerful ideas for problem solving are

demonstrated there.

1. Simplify the problem. There are so many possible five-pointed stars that it could take for¬

ever to draw one. By choosing a regular shape—one with all sides and angles the same—
we make the problem manageable. Simplifying the problem in this way also makes it very

much like some other problems we have already solved, such as drawing a square or a

triangle.

2. Limit the exploration to one element at a time, in this case, the angle needed for a five-

pointed star. Failure to limit the exploration is a very common problem solving bug for

adults as well as children. Watch people solve this type of problem sometime. You’ll no¬

tice that many people include several elements (for example, the size or orientation of the

star) in addition to the angle in their explorations. Such an approach makes the problem a

much more difficult and frustrating one.

3. Make an initial estimate and then systematically narrow the limits. When you know that

the solution is between 140 and 150, you’re much closer than when you knew it was

88 / Turtle Projects 1: Designs

Section 5.4.
Using Recursion

between 90 and 180. If you vary the angle randomly, it could take much longer to ap¬
proach a solution.

Some people are much better visual estimators than others. Unless they are also system¬
atic problem solvers, good estimators sometimes take longer to solve a problem than people
with poor estimating ability but good problem solving techniques. I chose 120 degrees as my
first estimate to show how to systematically and surely improve even a relatively poor first
choice.

There is an entirely different way to solve the problem of drawing a five-pointed star—a
mathematical or analytical approach. This approach tells us that in order to draw a closed
shape, the turtle must turn through a total angle which is an exact multiple of 360 degrees.
That is, the turtle has to make a total turn of exactly 1 x 360 (360 degrees) or 2 x 360 (720
degrees) or 3 x 360 (1080 degrees), etc., before it can get back to its starting point. This fact
is sometimes called the “Total Turtle Trip Theorem.” Since the turtle has to turn^zv^' times
in drawing a five-pointed star, try 360 / 5 as the angle. If that doesn’t work, try (2 x 360) / 5,
or (3 X 360) / 5, etc. You can use Logo arithmetic commands to make the computer do the
calculations.

REPEAT 5 [FORWARD 80 LEFT 360 / 5]
REPEAT 5 [FORWARD 80 LEFT (2 * 360) / 5]
and so on.

There is another way to make the computer repeat something over and
over—make a procedure that calls a copy of itself as a subprocedure. This
way of repeating something is called recursion. It is useful when you want
to experiment with shapes but don’t know how many times to repeat some¬
thing. It’s a good way to draw something when you know the angle, but not

the number of repeats.

TO STAR160
FORWARD 100
RIGHT 160
STAR160
END

TO FLOWER
TRIANGLE
RIGHT 60
FLOWER
END

Figure 5.24: A star and a flower drawn by using recursion.

Turtle Projects 1: Designs / 89

rmum ima

What’s happening here? Why do these procedures work? Look at Fig-
^ ure 5.25. When you type the command STAR160, Logo calls a procedure

with that name. Think of the procedure as one of Logo’s mechanical assis-

^ tants.

Figure 5.25a

Now STAR160 goes to work. It calls the FORWARD command and

tells it to move the turtle 100 steps.

Figure 5.25b

1

I

i

I
I

Next, STAR160 calls the RIGHT command and tells it to turn the turtle

160 degrees.

Figure 5.25c

Finally, STAR160 calls another assistant, the subprocedure STAR160.

Figure 5.25d

This new assistant, the second STAR160, will now start doing its job.
It will call FORWARD, RIGHT, and another new assistant, STAR160. And

so on.
You might ask, “How does it ever stop?” Good question! The answer

is, “It doesn’t!” You have to stop it by typing CTRL-G. Try a procedure
like one of the examples and see. In Chapter 7 you’ll learn how to make a
procedure that can stop when it is finished. For now, the only way to stop a

recursive procedure is by typing CTRL-G.
Here’s something else that’s fun to try with recursion. Make a silly

shape, any old thing, with the turtle. Give it a name and then make a recur¬

sive procedure with it.

TO SILLY
FORWARD 50
LEFT 90
FORWARD 20
LEFT 120
FORWARD 30
END

Figure 5.26: The shape drawn by SILLY.

By itself this isn’t much of anything, but put it into a recursive proce¬
dure and see what happens.

Turtle Projects 1: Designs / 91

TO SILLYONE

SILLY

SILLYONE

END

Figure 5.27: The shape drawn by SILLYONE.

Or, add a few steps to SILLY and then add a recursion line.

TO SILLYTWO

SILLY

RIGHT 60

BACK 50

SILLYTWO

END

Figure 5.28: The shape drawn by SILLYTWO.

92 / Turtle Projects 1: Designs

Figure 5.29: Examples of starting shapes and their recursive designs.

Recursion is good for making stars and polygons. Regular shapes with

lines that cross each other, like STAR135, are usually called “stars.” Regu¬

lar shapes with lines that don’t cross, like STAR45, are usually called

“polygons.”

TO STAR135

FORWARD 60

LEFT 135

STAR135

END

TO STAR45

FORWARD 30

RIGHT 45

STAR45

END

Turtle Projects 1: Designs / 93

STEP

Figure 5.30: Shapes drawn by STAR135 and STAR45.

Can you see how to use recursion to make a circle? Hint: pretend

you’re the turtle. Walk in a circle using combinations of steps and turns, but

don’t move and turn at the same time—the turtle can’t do that even though

you can. Look at the illustration showing the turtle walking in a circle.

TURN ETCP TmCff
Figure 5.31: Playing turtle to figure out how to draw a circle.

Now can you see how to write a circle procedure? Here’s part of a

“circle” drawn by the turtle. See if you can make the turtle draw a full

“circle” using recursion.

Figure 5.32: A partial circle drawn with 20-degree turns.

94 / Turtle Projects 1: Designs

mtnf& HiMT

Section 5.5.
Designs with Circles
and Arcs

EKnmmH

Recursion is another of Logo’s most powerful ideas—a procedure which calls itself! This
turns out to be useful for making some otherwise complicated things very easy. (The most
complicated are beyond the scope of this book, but you’ll want to learn about them to do
“serious” Logo programming. There are some examples in Chapter 14, “How the Special
Tool Procedures Work.”)

If you’re familiar with BASIC, you might mistakenly think that recursion is just another
way to do what BASIC does using GOTO or FOR-NEXT loops. The process of recursion
should not be confused with the process of looping. Recursion really means calling a new

subprocedure with the same name. It’s very different from going back to an earlier instruction
and continuing on.

There’s a lot more about recursion in Chapter 7. That’s where variables and conditional
stop rules are first used. It is introduced in this chapter as a good way of making designs,
which is, in turn, a good way of introducing recursion.

In Chapter 2, you started using circle and arc procedures. Now that

you know something about teaching the computer new commands, you can

use circles and arcs to make more interesting shapes. First you have to

LOAD "CIRCLES from the LWAL Procedures Disk. Circle and arc proce¬

dures RCIRCLE, LCIRCLE, RARC, and LARC each need one input number,

the radius of the circle or arc you want to draw.*

Here are some designs you can make with circles. If you hide the turtle

while drawing circles and arcs, it will draw them a lot faster.

‘ If you prefer, you can use the procedures CIRCLER, CIRCLEL, ARCR, and ARCL, which
are part of the startup file on the Apple Logo Language Disk. ARCR and ARCL use two in¬
puts. The first is the radius of the arc. Use 90 for the second input, to draw the designs
shown here. Section II.7 of Appendix II explains how to add my circle-and-arc procedures to
the Apple Logo startup file.

Turtle Projects 1: Designs / 95

Can you see how to make this one?

Figure 5.34: A “slinky” design.

You just draw a circle, move a turtle a little (with its pen up), and do

that all again. If you add a rotation before each move, you’ll get something

like the design in Figure 5.35.

Figure 5.35: A “curved slinky” design.

Figure 5.36 shows a harder design.

Figure 5.36: Five interlocking circles, the symbol of the Olympic Games.

Hint: Make two separate rows of circles, then figure out where the sec¬

ond row should start so that the design will come out the way you want it.

96 / Turtle Projects 1: Designs

Figure 5.37: Two rows of circles.

Here is a very hard problem: Can you make the turtle draw a circle

starting and ending at its center! This is very useful for many designs. Fig¬

ure 5.38 shows some of the steps. See if you can make them into a proce¬

dure.

A
a

d

t>

f

Figure 5.38: Some of the steps for making a centered circle.

Put this circle and some lines together to draw a sort of sun, as shown

in Figure 5.39.

Figure 5.39: Combine a centered circle with centered lines to create a sun.

Turtle Projects 1: Designs / 97

RARC and LARC draw quarter circles. You can make interesting de¬

signs by putting them together. Figure 5.40 shows a “snake” made by using

right and left arcs one after another.

Figure 5.40: A snake made by using arc procedures.

This can be made into a different kind of sun. Draw a snake, turn the

turtle almost all the way around, and repeat the whole process.

TO SUN

SNAKE

RIGHT 160

SUN

END

Figure 5.41: Making a snake into a sun.

You’ll get very diflferent designs by changing the angle.

You can also put two arcs together to make a petal, as shown in Figure

5.42.

Figure 5.42: A petal made from two arcs.

Can you see how to make the petal? First, pick a size for your arc.

PARC 30

Figure 5.43: An arc drawn by RARC 30.

If you just add another arc, you get a semicircle.

RARC 30

RARC 30

Figure 5.44: Two arcs make a semicircle.

To make the petal, you have to turn the turtle before drawing the sec¬

ond arc. How much should you turn the turtle? Believe it or not, a petal is

very much like a square. This is because the turtle turns through a square

corner, exactly 90 degrees, while drawing RARC.

Turtle Projects 1: Designs / 99

-o V

A L _

Figure 5.45: Making the petal is a lot like making a square.

To complete the PETAL, you need a 90-degree turn at each end.

TO PETAL

PARC 30

RIGHT 90

PARC 30

RIGHT 90

END

Like SQUARE, PETAL leaves the turtle back where it started.

Put some petals together to make different kinds of flowers.

Figure 5.46: Two different kinds of flowers.

100 / Turtle Projects 1: Designs

Draw a spiral by making arcs get larger and larger. (In Chapter 7 you’ll

learn how to do this more easily using variables.)

Here’s another neat trick you can do with arcs. Make the turtle retract

its steps to get back where it started. Start with a snake, for example. Turn

the turtle right or left 180 degrees, you can retrace the turtle’s steps using

the same procedure.

TO SNAKE

PARC 30

LARC 30

PARC 30

LARC 30

END

TO RAY

SNAKE

RIGHT 180

SNAKE

RIGHT 180

END

Figure 5.48: Retracing the turtle’s steps to draw a ray.

Turtle Projects 1: Designs / 101

Combine RAY with a rotation to make another kind of star.

Make a mirror image snake by reversing the order of right and left

arcs. Then you can put SNAKE and MIRRORSNAKE together to make this

kind of design:

Figure 5.50: Designs using SNAKE and MIRRORSNAKE.

102 / Turtle Projects 2: Drawings

CHAPTER 6

St*

New commands used: none
LWAL Procedures Disk files used: "CIRCLES
New tool procedures used: none.

Turtle Projects 2: Drawings / 103

Turtle Projects 2: Drawings

f

You can use the turtle to make all kinds of drawings; people, animals,

cars, planes, trucks, or even your initials, for example. In this chapter

you’ll see see some examples of how this is done, so that you can make the

turtle draw whatever you want.
Drawing with the turtle can be very different than other kinds of draw¬

ing. This is because the turtle is so dumb! You have to tell it every single

step and turn to make. Of course, once it knows how to draw something, it

can easily redraw the same picture over and over again.

Don’t be afraid to try a project that looks difficult at first. Any turtle

drawing, no matter how complicated, can be built up from small, simple

pieces. If you work slowly and think carefully about what you are doing,

you should be able to complete any project in this chapter.

Here are a few tips that can make complicated turtle drawing projects a

lot easier:

1. Draw your idea first in your journal or on a piece of paper.

2. Divide the drawing into parts. You can do a very complicated drawing

one part at a time.

3. Give each part a name. You’ll use these names for procedures.

4. Draw a picture showing how the parts could fit together, and number

them in the order you want to put them together.

5. Simplify the project. If some of the parts look too hard to draw, leave

them out or substitute something that’s easier to draw.

6. Now start writing procedures. Some people like to do all the proce¬

dures in order so that they can see the project fit together as they go

along. Others like to make all the pieces first, starting with the easiest,

and put them together later. Either way is fine, depending on how you

like to do things and the particular project you’re working on.

mnftjs HUT

People have very different approaches to developing projects. The approach 1 am

suggesting here is sometimes called top-down programming because it starts from the “top,”

the general ideas, and gradually works “down” to the details. Not everyone is comfortable

with this abstract an approach to planning a project. Some learners accept and understand

project design principles like these very readily. Others develop their own approaches to

project design over a long period of trial and error. These ideas are meant to be suggestions,

available for anyone who wants to use them. They shouldn’t be forced on anyone who isn’t

ready for them or who prefers to do things differently.
In fact, in teaching Logo to many beginners I have found that it is best for them to find

their own ways to do things. For a helper, the most important thing is to have patience, to

understand how each particular person thinks about what he or she is doing, and to offer help

within that understanding. It can be as counter-productive to force everyone into the same

mode of learning as it would be to make everyone do the same project. In time, students

come to “own the process” as well as the product. This ownership cannot be forced. The

trick of teaching is to know when to make a suggestion and when to leave someone alone.

Perhaps even more subtle is to learn to make a suggestion and then be comfortable with a

learner who rejects it. !

104 / Turtle Projects 2: Drawings

Section 6.1.
Drawing a Truck

Not everyone can hold two images of the same project in his or her head at once, that is,

see the project both as a totality and as the sum of its parts. Some people prefer a more

intuitive approach to using subprocedures and simply start out drawing the entire design.

When it is clear that part of the design is finished, or when a good stopping point is reached,

give that part a name and teach it to the computer. In this way, the idea that a large project

can be built up from subparts can be introduced gradually, without imposing it in advance.

Later (sometimes much later) someone may begin to see the advantage of planning the parts

ahead of time.

Suppose you want to make the turtle draw a truck like the one drawn

by hand in Figure 6.1.

Figure 6.1: Hand-drawn design for a truck.

I would design this truck by dividing it into three parts named BIGBOX,

SMALLBOX, and WHEELS.

Sfoailtox

Figure 6.2: Dividing the truck into small parts.

These parts can be put together in any order. First, let’s make each

part separately. Start each part with the screen cleared and the turtle at

home.

Turtle Projects 2: Drawings / 105

TO BIGBOX

REPEAT 4 [FORWARD 60 RIGHT 90]

END

TO SMALLBOX

REPEAT 4 [FORWARD 30 RIGHT 90]

END

TO WHEELS

RIGHT 90

RCIRCLE 5

FORWARD 90

RCIRCLE 5

BACK 90

LEFT 90

END

Figure 6.3 shows what each of the three parts of the truck look like.

Figure 6.3: The three parts of the truck.

o

HTFAU

To draw the WHEELS you’ll need to LOAD "CIRCLES from the LWAL

Procedures Disk. If you don’t have a complete LWAL Procedures Disk yet,

you can copy the circle procedures from Appendix 1.

Be sure to put your own Logo work disk back in the disk drive after

loading "CIRCLES.

Now, put them all together.

TO TRUCK

BIGBOX

SMALLBOX

WHEELS

END

Type the command, TRUCK.

106 / Turtle Projects 2: Drawings

mFAU

nmm ima

O -—D
Figure 6.4: The first try for a truck doesn’t quite work.

WHOOPS! This isn’t exactly what we planned. We’ve got a bug! Don’t

be discouraged. This happens to everybody who works with computers.

The bug is easy to fix. We made each part, but we forgot to put them

where they belong. We need two more procedures, MOVEOVER and

MOVEBACK. One moves the computer over from the BIGBOX to the

SMALLBOX. The other moves it back. There are lots of ways to do this.

Try to figure out how to do it yourself before looking ahead.

Everyone who works with computers meets bugs from time to time.

They can’t be avoided. Sometimes the best thing to do when something like

this happens is to laugh at how dumb the computer is.

Figure 6.5 shows what I’d like the MOVEOVER and MOVEBACK pro¬

cedures to do.

A A
-►

Figure 6.5: What MOVEOVER and MOVEBACK do.

TO MOVEOVER

RIGHT 90

FORWARD 60

LEFT 90

END

Turtle Projects 2: Drawings / 107

TO MOVEBACK

LEFT 90

FORWARD 60

RIGHT 90

END

Now edit TRUCK and add these two new procedures.

TO TRUCK

BIGBOX

MOVEOVER

SMALLBOX

MOVEBACK

WHEELS

a-—o
Figure 6.6: The truck looks better on the second try!

At last! A finished truck! Or is it? If I were being fussy I might say,

“That’s not like the picture I drew. The wheels aren’t in the right places

yet.’’

Figure 6.7: Compare the truck with our original design.

Now it’s up to you. Lots of people are satisfied with something that’s

pretty much like what they started out to do. You might even like it better

this way! On the other hand, you could change the WHEELS procedure so

that it looks more like the original plan.

T3- cT a o

Figure 6.8: A truck with changed wheels.

108 / Turtle Projects 2: Drawings

)

mFAU

Don’t forget to save your procedures now by typing SAVE 'TRUCKS

or whatever name you choose.

EXHMKmH

Now that you’ve built the truck, you might want to add some features

or make some different kinds of trucks. Add a cab and bumpers, change the

wheels, or change it into a van or a pickup. Figure 6.9 shows a fleet of
Logo trucks.

c c

u

1

TT

"*■^7-^ C=:^
Figure 6.9: A fleet of Logo trucks.

1

I 1

I

HELKkJS HIMT

Bugs were deliberately introduced into this example to illustrate two important ideas.
First, bugs do appear all the time. Often they can be quite amusing. Second, some bugs,

although they lead to an unintended result, can be quite acceptable and maybe even improve

a design or transform it into something else. Exact completion of the original plan is neither
necessary nor desirable.

The first bug is an example of a turtle state bug. It comes from not having accounted for

the state of the turtle—its exact position and heading—before and after drawing each part of

the figure. That is, we failed to realize that the turtle had to move over after drawing BIGBOX

before it could draw SMALLBOX. Such bugs are very common in all kinds of turtle projects.

The second bug is also a turtle state bug, but it’s a little different. It was due to our first

making a simpler version of the wheels and then deciding whether to elaborate it to make it

more like the original plan. It’s a good strategy to make the first attempts as simple as

possible, get the whole thing together, and then elaborate. I often encourage people to

simplify a design before programming it, with the understanding that it can be elaborated or
extended later.

A plan is not meant to be set in stone. The best problem-solving processes incorporate
flexibility and allow for reevaluation at any point. If something turns out to be harder than

you thought, simplify it. You can always come back to it later. Or, if you get a good idea for

how something could be more interesting, don’t hesitate to revise your plan as you go along.

Turtle Projects 2: Drawings / 109

Section 6.2. Here’s another easy project—drawing a stick figure of a person. This

Drnwing 3 Person person has arms, legs, a body, and a head.

Figure 6.10: Hand-drawn design for a stick-figure person.

This time, let’s teach the computer to PERSON.

TO PERSON

BODY

LEGS

ARMS

HEAD

HAT

END

PERSON is a superprocedure; that is, it’s the one procedure that

makes everything else happen. A superprocedure is like the boss of the pro¬

ject. You tell PERSON to go to work, and then PERSON calls on all its

helpers to get the job done.

Figure 6.11: The superprocedure PERSON gives orders to its helpers.

If you type the command PERSON before teaching the computer how

to BODY, ARMS, LEGS, etc., Logo will complain. Try it and see.

Now let’s teach it to BODY. This is just a stick.

TO BODY

FORWARD 30

BACK 30

END

Figure 6.12: Result of the BODY procedure.

Look at the legs for a minute. The left leg and right leg are symmetri¬

cal. That is, they are exact mirror images of each other. We’ll use two sub¬

procedures, LEFTLEG and RIGHTLEG.

TO LEGS

LEFTLEG

RIGHTLEG

END

The LEFTLEG procedure makes the turtle start and end at the same

place so that RIGHTLEG can be easily added later.

TO LEFTLEG

RIGHT 30

BACK 30

LEFT 90

FORWARD 5

BACKS

RIGHT 90

FORWARD 30

LEFT 30

END

Figure 6.13: Result of the LEFTLEG procedure.

Turtle Projects 2: Drawings / 111

The last four steps reverse the first four in order to get the turtle back

where it started.
RIGHTLEG uses the same FORWARD and BACK steps as LEFTLEG,

but reverses all the angles.

TO RIGHTLEG

LEFT 30

BACK 30

RIGHT 90

FORWARD 5

BACK 5

LEFT 90

FORWARD 30

RIGHT 30

END

Figure 6.14 shows what we get when we type the command LEGS.

Figure 6.14: Result of the LEGS procedure.

When something is symmetrical, the right side is the mirror image of

the left or the top is the mirror image of the bottom. You can use symmetry

to save yourself a lot of work in many projects. With rightlleft symmetry, if

you know how to draw one side, you can draw the other by reversing

angles.
To use this idea, you also have to use another powerful idea—making

the procedure start and end at the same place.

raffism JMA

112 / Turtle Projects 2: Drawings

Now, type the command PERSON. The computer should draw part of

the figure and print a message telling you that it hasn’t been taught how to

ARMS yet.

Figure 6.15: Putting LEGS and BODY together.

Now let’s teach it to ARMS.

TO ARMS

FORWARD 20

RIGHT 90

FORWARD 20

BACK 40

FORWARD 20

LEFT 90

BACK 20

END

A
Figure 6.16: Result of the ARMS procedure.

Now if you type PERSON, the computer should draw the design in
Figure 6.17.

Figure 6.17: PERSON still needs a head.

Turtle Projects 2: Drawings / 113

The head should look something like a balloon.

O

A
Figure 6.18: This balloon should make a good head.

See if you can figure out the HEAD procedure by yourself. You 11 have
to load the "CIRCLES file from your LWAL Procedures Disk or copy the
circle procedures from Appendix I. Remember to have it start and end at
the same position so that the other parts of the person will connect with it.

The last subprocedure is HAT.

TO HAT
PENUP
FORWARD 40
PENDOWN
DRAWHAT
PENUP
BACK 40
END

HAT uses PENUP so that the turtle doesn’t draw a line across the per¬
son’s face. HAT has a subprocedure of its own, DRAWHAT. DRAWHAT
uses two RARC procedures, one after another, to make a semicircle.

TO DRAWHAT
LEFT 90
FORWARD 10
BACKS
RIGHT 90
RARC 5
RARC 5
LEFT 90
FORWARD 5
BACK 10
LEFT 90
END

114 / Turtle Projects 2: Drawings

Figure 6.19; Our finished PERSON.

If you used a radius of more or less than 5 for your HEAD procedure,

you’ll have to adjust the first and last step of HAT so that it fits. Can you

change HAT so that it fits on the head as shown in Figure 6.20?

Figure 6.20: A PERSON with a HAT on the middle of its head.

Which way does it look better to you?

sKfUfUffm

Figure 6.21 gives some variations you might want to try.

Figure 6.21: PERSON can be modified in a number of ways.

Turtle Projects 2: Drawings / 115 I
j

Figure 6.21 (continued).

I
I

4

I

I
I

HOMfd Huer

There are several important ideas illustrated by this project.

1. Symmetry is useful in many contexts. Using symmetry to solve a problem is related to a

more general idea: When dividing a problem into parts, look for ways of doing it so that

the total problem is simplified.

2. A procedure in which the turtle starts and ends in the same state is said to be state trans¬

parent. At first, state-transparent shapes seem unnecessarily complex. They have certain

advantages, however. For example, state-transparent subprocedures can be combined in

any order. I could have written PERSON in the opposite order and it would still have

worked. Another important advantage is that I can substitute any other state-transparent

procedure for one of my subprocedures and everything else would still work. To draw

the figure with V-shaped arms, I could just substitute a different ARMS procedure with¬

out changing anything else.

3. The use of a superprocediire as a plan: PERSON is both a superprocedure—is, a

procedure which makes the turtle draw the entire shape—and a plan for the whole pro¬

ject. By writing the superprocedure, I was also writing a clear plan for the whole project.

Teaching the computer the superprocedure before defining any of the subprocedures al¬

lowed me to check my progress as I went along without having to type in a bunch of sub¬

procedures. Like any plan, 1 might have had to change the superprocedure as I worked

out the details of the project. In this case, though, I was able to complete the project

without modifying my original plan.

I

116 / Turtle Projects 2: Drawings

Section 6.3. There are lots of ways to draw a flower. Here’s one that uses arcs to
Drawing a Flower make the petals and leaves. The basic building block is called PETAL. It is

made from two PARC or LARC procedures.

Do you remember how to make the petal? We made one just like it in
Section 5.5. Look back at that section if you need help. Of course you’ll
have to load the "CIRCLES file from your LWAL Procedures Disk or copy
it from Appendix I. Then make several petals of different sizes so that you
can make a lot of different flowers.

Figure 6.23: Different kinds of blossoms.

Turtle Projects 2: Drawings / 117

Make a flower by putting together a stem, a leaf or two, and a blossom.

■Si +
Figure 6.24: Assembling a flower.

Make yourself a whole garden. Use different pen colors if you have a

color TV or monitor.

In Chapter 7, you’ll learn how to teach the computer procedures with

inputs that make it easy to draw different sized blossoms, leaves, and flow¬

ers. You’ll be able to make a really fancy garden when you know about

inputs.

118 / Turtle Projects 2: Drawings

Section 6.4. The project ideas in this section come from students who have used
More Ideas for Turtle Logo. They are given as a collection of pictures, sometimes with a hint or
Drawing Projects two. These ideas are included here to serve as starting points for your own

projects. You may never want to do any one of these particular projects,
but they will give you ideas of what other people have enjoyed doing with
Logo.

Faces

EKnmjM

Faces tend to be symmetrical, so you can use symmetry when you
draw them. Other faces are funnier if they are not symmetrical, or if they
include parts that are not. Study each design to see what its parts are and
how they were put together.

Figure 6.26: A variety of faces.

Turtle Projects 2: Drawings / 119

The head in Figure 6.27 was designed and built by an 11-year-old boy
named Donald. He started by teaching the computer a superprocedure
called HEAD. Then he carefully made each of the subprocedures in order.

Each one took a lot of planning and testing to make it work. Some of
the subprocedures have subprocedures of their own.

TO HEAD
BOX
EYES
NOSE
MOUTH
BEARD
HAIR
EARS
HAT
FLOWER
END

o <5 o o o o

-SI
IIIIMIMMMMIIMIIM\ / llllllllllllilllllilllll

O O O O c >o o

jiwmiwtt

Figure 6.27: Donald’s head and how it was assembled.

120 / Turtle Projects 2: Drawings

Bugs and Animals In this case, “bugs” means drawings of insects. These projects show
how a turtle drawing can give the idea of an animal using very simple
shapes.

Figure 6.28; A collection of Logo animals.

Trees This example shows how you can start with a twig and go on to build a
whole forest.

4SBB^

^ 4Sf^

4SBB^ 4SBB^

Figure 6.29: A branch, bush, tree, and forest.

Turtle Projects 2: Drawings / 121

Going Places These all represent vehicles that help people get somewhere.

Figure 6.30: Different kinds of transportation.

Baseball Two boys worked on this project together. They made a general plan,
and then each made different parts. It was a big project that was part of an
even bigger project—a Logo baseball game. Even though the bigger project
was never finished, the boys had a lot of fun working on this part and were

quite satisfied with what they had done.

Figure 6.31: Constructing a baseball field.

CHAPTER 7

Short
Command Form Examples With Inputs

+ FORWARD :SIZE + 10, PRINT 5 + 3
IF IF :SIZE < 10 [STOP]
STOP IF :SIZE < 10 [STOP]
< IF :SIZE < 10 [STOP]
> IF ANGLE > 90 [STOP]

IF :SIZE = 100 [STOP]
PRINT 5 = 3 + 2

HEADING IF HEADING = 0 [STOP]
PRINT HEADING

LWAL Procedures Disk files used: "CIRCLES
New tool procedures used: none.

Variables / 123

7 Variables

In this chapter you’ll learn how Logo keeps track of information using

variables. A variable is a piece of information with a name. The comput¬

er stores the name and the information in its working memory. You can

easily change or vary the information whenever you want. That’s one rea¬

son it has the name variable.
You can store a lot of different kinds of information with variables. In

Logo a variable can be a number, a word, or a list. You’ll learn more about

different kinds of variables in Chapter 9. All the variables in this chapter are

going to be numbers.
There are two ways to create a Logo variable. In Chapter 9 you 11 learn

how to use a built-in Logo command, MAKE, to create Logo variables. In

this chapter we’ll use procedures with inputs to create variables. Inputs to

Logo commands like FORWARD, BACK, RIGHT, and LEFT make it possi¬

ble for those commands to do many different things. Inputs to procedures

like SQUARE and TRIANGLE make it possible for them to do many differ¬

ent things also.

Section 7.1.
Inputs that Change the

Size of a Design

Look at this design in Figure 7.1.

Figure 7.1: A design made from five squares.

This design has five different boxes in it. Without variables we would

have to make five different procedures, each one using a different input to

FORWARD. Using variables, we can create one procedure which uses an

input to tell it how big the square should be.

Copy this procedure

124 / Variables

HTFAU

TO SQUARE :SIZE

FORWARD .SIZE

RIGHT 90

FORWARD :SIZE

RIGHT 90

FORWARD :SIZE

RIGHT 90

FORWARD :SIZE

RIGHT 90

END

Or, if you like, type it this way

TO SQUARE :SIZE

REPEAT 4 [FORWARD :SIZE RIGHT 90]

END

You can use any word you like instead of :SIZE, of course. The name

:SIZE helps you remember that it determines the size of the object, just as

the name SQUARE helps you remember which shape the procedure draws.

To make the turtle draw a square, type the command SQUARE fol¬

lowed by an input. The input is typed just like the input to FORWARD or

RIGHT.

SQUARE 30

SQUARE 40

SQUARE 50

etc.

Now you can make a procedure to draw the design shown in Figure

7.1.

TO BOX5

SQUARE 10

SQUARE 20

SQUARE 30

SQUARE 40

SQUARE 50

END

The : symbol used with Logo variables is something new. There are

two special rules for its use.

1. Always type :SIZE without a space after the :. If you leave a space and

type : SIZE, Logo will complain.

2. Don’t type the : at all when you are giving a value for the size. Watch

what happens if you do.

SQUARE :30

30 HAS NO VALUE

What this means is that there is no variable named 30. When you type

:30, Logo looks for something named 30, to use its value. When it can’t

find it, Logo complains.

Variables / 125

You can also use variables to draw the STAR and TRIANGLE shapes

from Chapter 5.

TO STARS :S1ZE
REPEAT 5 [FORWARD :S1ZE RIGHT 144]

END

and

TO TRIANGLE :SlZE
REPEAT 3 [FORWARD :SIZE RIGHT 120]

END

EXHMATM

Make some designs using different sized stars and triangles.

There are a lot of ways to think about variables. Figure 7.3 shows what

happens when you use a procedure with inputs.

1. When you teach the computer a procedure with an input, such as TO

SQUARE :S1ZE, Logo stores two things in its memory—the list of in¬

structions for the procedure, and an empty slot with the name of the in¬

put, "SIZE on it. The slot is empty because "SIZE has not been given a

value yet.

MHEXm IMA

Figure 7.3a: Logo first stores the procedure with an empty slot called "SIZE.

2. When you type a command with an input, like SQUARE 20, Logo puts

the value 20 in the box and calls a SQUARE worker to carry out the
procedure.

Figure 7.3b: Logo puts the input, 20, in the empty slot.

Variables / 127

3. Logo calls SQUARE and puts a value of 20 in its input pouch.

Figure 7.3c: Logo calls the procedure SQUARE.

4. Whenever SQUARE comes to an instruction like FORWARD iSIZE, the

: tells SQUARE to find the value in the slot called "SIZE and use that

value as an input to FORWARD.

Figure 7.3d: SQUARE gives FQRWARD the value. 20, to use as its input.

128 / Variables

mLKItjS HIHT

The most important thing for a learner to remember right now is how to use variables—

especially the two rules for avoiding pitfalls given above.

The long explanation about what the computer is doing does not have to be understood

the first time variables are used. As the use of variables gets more complex, this explanation
may become clearer and more helpful.

There are some other points worth noting here. Logo uses the symbols : and " to make
some important distinctions:

:SIZE means output the value in the slot named "SIZE.

"SIZE means the name SIZE itself.

SIZE without : or " means a command or procedure with the name SIZE.

Without these two symbols, : and ", the meaning of an expression which included the

word SIZE would be ambiguous. You can make things even clearer by using the words dots

and quotes to describe these symbols. The expression :SIZE is pronounced dots-size and the

expression "SIZE is pronounced quotes-size. Use these words when you talk about variables.

There’s another thing to keep in mind. When you create a procedure with an input, like

TO SQUARE :SIZE, the value in the slot "SIZE is kept as private information to be used only

within that procedure. When you give the command SQUARE 20, the value 20 is put into the

slot and used until SQUARE finishes doing its job. Once SQUARE is complete, the box that
contained 20 is emptied again.

Try this sequence of commands to see what I mean.

PRINT :SIZE

SQUARE :SIZE

SQUARE 20

PRINT :SIZE

"SIZE has a value only while SQUARE 20 is actively functioning. Now try this sequence.

MAKE "SIZE 50

PRINT :SIZE

SQUARE :SIZE

SQUARE 20

PRINT :SIZE

MAKE is the other way of creating a Logo variable. It creates a public slot named "SIZE

and puts the value 50 in it. There are now at least two slots named "SIZE, the private slot

belonging to SQUARE (which is still empty) and the public slot. The command PRINT :SIZE

uses the value in the public slot. The command SQUARE :SIZE uses 50, the value in the

public slot, and puts it temporarily into the private slot for SQUARE. When you type

SQUARE 20, 20 is put into SQUARE’S private slot temporarily. When you type PRINT :SIZE,

the value from the public slot is used again. If this sounds confusing now, just let it sink in for

a while and come back to it later after you’ve read Chapter 9, where MAKE is introduced
“officially.”

Variables / 129

Section 7.2.
Inputs that Change the

Shape of a Design

These three designs in Figure 7.4 are all made from the same proce¬

dure. It takes an angle as an input.

SPINSQUARES 1 5

Figure 7.4: Shapes made by SPINSQUARES ANGLE with inputs of 90, 45, and 15 degrees.

TO SPINSQUARES :ANGLE

SQUARE 50
RIGHT :ANGLE
SPINSQUARES lANGLE

END

SPINSQUARES uses recursion, the technique you first learned about in
Section 5.4. When the SPINSQUARES procedure reaches its last line, it
calls another SPINSQUARES procedure. As you can see, SPINSQUARES

will never stop unless you type CTRL-G.
The line in the procedure at which SPINSQUARES calls another

SPINSQUARES is called the recursion line.

mrNLL

Whenever you write a procedure that has inputs and recursion, be sure
to include the variable name in the recursion line. Once you include an in¬
put in the name of the procedure, the procedure will need a value for that
input every time it is called. Just as RIGHT needs a value and uses .ANGLE
to know how much to turn the turtle, SPINSQUARES needs a value,

ANGLE, to do its job.

Here’s another example. This procedure makes a lot of different stars

(if you give it an input larger than 90).

130 / Variables

STARS 150 STARS 160

Figure 7.5: Stars created with STARS ;ANGLE and inputs of 135, 144, 150, and 160 degrees.

TO STARS :ANGLE

FORWARD 50

RIGHT .ANGLE

STARS :ANGLE

END

iKnmimK

• Make a lot of different stars by using STARS :ANGLE with a lot of dif¬

ferent input numbers. Can you make a nine-pointed star? A ten-pointed

star? A fifteen-pointed star?

• Use the same input for SPINSQUARES and STARS. Try a lot of differ¬

ent numbers. The two designs will have a lot in common because they
have the same angle input.

Figure 7.6: Designs created with SPINSQUARES 144 and STARS 144.

• Make some other spinning designs of your own, using any shapes you

want.

Variables / 131

m Section 7.3.
I Procedures with Two

More Inputs

I ■

I

Figure 7.7: Spinning designs made from several different shapes.

This procedure draws stars with dififerent sizes and angles.

TO STARS2 :SIZE :ANGLE
FORWARD :SIZE
RIGHT :ANGLE
STARS2 :SIZE lANGLE

END

STARS2 50 135 STARS2 20 135

Figure 7.8: Shapes made by STARS2 :SIZE :ANGLE.

132 / Variables

In Chapter 8, you’ll learn a lot more about this kind of procedure and

what you can do with it.

Another shape that needs two inputs is a rectangle. It needs two differ¬

ent sizes that correspond to its length and width.

TO RECTANGLE :LENGTH :WIDTH

FORWARD :LENGTH

RIGHT 90

FORWARD :WIDTH

RIGHT 90

FORWARD iLENGTH

RIGHT 90

FORWARD :WIDTH

RIGHT 90

END

Depending on the inputs you use for the length and width, this proce¬

dure can make a lot of different shapes.

]

RECTANGLE 10 50 RECTANGLE 60 20

RECTANGLE 100 20 RECTANGLE 50 50

Figure 7.9: Shapes made by RECTANGLE :LENGTH :WIDTH.

A rectangle with equal inputs is a square.

Variables / 133

EKHMIffM

Section 7.4.
Subprocedures With

Variables

Make spinning designs with lots of different shapes and sizes, like those

in Figure 7.10.

Figure 7.10: Spinning designs made from squares, triangles, and rectangles.

SPINSQUARES in Section 7.2 used SQUARE 50 as a subprocedure.

SPINSQUARES2 uses a variable-sized square as a subprocedure, and has

two inputs, just like STARS2.

TO SP1NSQUARES2 :S1ZE ;ANGLE

SQUARE :S1ZE

RIGHT :ANGLE

SP1NSQUARES2 :S1ZE :ANGLE

END

Figure 7.11: Designs created by SPINSQUARES2 with several sets of inputs.

134 / Variables

Here’s another example using subprocedures with variables. Suppose

you made a “house” using fixed-length square and triangle procedures with

a length of 50.

TO HOUSE

SQUARE

FORWARD 50

RIGHT 30

TRIANGLE

LEFT 30

BACK 50

END

Figure 7.12: Results of the fixed-size HOUSE procedure.

You can make a variable-sized house by shifting to variable SQUARE

and TRIANGLE procedures and adding a size input to HOUSE.

TO HOUSE :S1ZE

SQUARE :S1ZE

FORWARD :SIZE

RIGHT 30

TRIANGLE :S1ZE

LEFT 30

BACK :S1ZE

END

Figure 7.13: Houses drawn by HOUSE 20 and HOUSE 50.

Variables / 135

Figure 7.14: A row of houses made with the HOUSES procedure.

TO HOUSES

MOVEOVER -100

HOUSE 10

MOVEOVER 10

HOUSE 20

MOVEOVER 20

HOUSE 30

MOVEOVER 30

HOUSE 40

MOVEOVER 40

END

HOUSES needs another subprocedure that I call MOVEOVER.

MOVEOVER was given a negative input in the first line of HOUSES so that

the turtle would move over to the left instead of right.

HTFAU

When you type a negative number like —100, there’s no space between

the - and the 100. If you type - 100 with a space, Logo might think you

were trying to subtract 100 from something.

Here is MOVEOVER. It is a lot like the MOVEOVER procedure used in

Section 6.1 except that the distance moved is a variable.

TO MOVEOVER :SIZE

PENUP

RIGHT 90

FORWARD :SIZE + 10

LEFT 90

PENDOWN

END

136 / Variables

\j

Did you notice the line FORWARD :SIZE + 10 in MOVEOVER? One of

the best things about using number variables is that you can add, subtract,

multiply, and divide them just as you can with any numbers. We’ll use

arithmetic with variables a lot in the rest of this book. Watch for it!

numnim
Remember the FLOWER and BLOSSOM procedures in Chapter 6?

They can be made with variables, too. (Remember to load the "CIRCLES

file from your LWAL procedures disk before trying these.)

TO PETAL :SIZE

RARC :SIZE

RIGHT 90

RARC :SIZE

RIGHT 90

END

TO BLOSSOM :SIZE

REPEAT 6 [PETAL .SIZE RIGHT 60]

END

TO STEM :SIZE

FORWARD :SIZE

PETAL :SIZE

FORWARD :SIZE * 2

END

TO FLOWER :SIZE

STEM :SIZE

BLOSSOM :SIZE
BACK ;SIZE * 3

END

Notice that multiplication was used in STEM and FLOWER. Can you

figure out why the turtle went forward :SIZE * 2 in STEM, and back :SIZE

* 3 in FLOWER? In case you didn’t know, * is Logo’s symbol for multipli¬

cation.

FLOWER can be used to make a garden.

TO GARDEN

MOVEOVER -50

FLOWER 30

MOVEOVER 20

FLOWER 40

MOVEOVER 20

FLOWER 50

END

Variables / 137

Figure 7.15: A GARDEN with flowers of different sizes.

FLOWER can also be used to make a star-like design.

TO FLOWERDESIGN :SIZE :ANGLE

FLOWER :S1ZE

RIGHT :ANGLE

FLOWERDESIGN :SIZE :ANGLE

END

FLOWERDESIGN 30 60 FLOWERDESIGN 60 30

Figure 7.16: Shapes made by FLOWERDESIGN :SIZE :ANGLE.

Use variables with other drawings and designs from Chapters 5 and 6,

and then combine them into pictures. The variable sizes let you adjust

each part of the drawing so that everything goes together properly. Fig¬

ure 7.17 shows an example.

Emmrm

138 / Variables

Figure 7.17: This design combines several procedures from Chapters 5 and 6 by using
variables to adjust the sizes.

• Make some new procedures with variables.

Section 7.5.
Making a Design
“Grow” and “Stop”

Several of the earlier examples used designs that grow. For example,
BOX5 in Section 7.1 grows.

TO BOX5
SQUARE 10
SQUARE 20
SQUARE 30
SQUARE 40
SQUARE 50
END

Figure 7.18: A design created by BOX5.

HOUSES, from Section 7.4, makes bigger and bigger houses.

TO HOUSES
MOVEOVER -100
HOUSE 10
MOVEOVER 10
HOUSE 20
MOVEOVER 20
HOUSE 30
MOVEOVER 30
HOUSE 40
MOVEOVER 40
END

Variables / 139

i

i

I

fWBtPIL fMA

Figure 7.19: A row of growing houses.

t

We can replace and simplify these procedures by ones that use varia¬

bles to make them grow.

TO GROWSQUARES :S1ZE
SQUARE :S1ZE
GROWSQUARES :SIZE + 10

END

and

TO GROWHOUSES ;SlZE
HOUSE :SlZE
MOVEOVER :SlZE
GROWHOUSES :SlZE + 10

END

The first input to GROWSQUARES or GROWHOUSES gives the start¬

ing size for the growing shapes; GROWSQUARES 10 or GROWHOUSES
10. Try them and see. The only way to stop them is to type CTRL-G.

GROWSQUARES and GROWHOUSES are unusual procedures. They
^ use the subprocedures SQUARE, HOUSE, and MOVEOVER to do all the

work of drawing designs. All that GROWSQUARES and GROWHOUSES
^ do is pass messages that change the values of their inputs! Look at

GROWSQUARES line by line. Suppose you type

GROWSQUARES 10
GROWSQUARES starts with a value of 10 in its input slot.

SQUARE :S1ZE
GROWSQUARES calls SQUARE and puts the value 10 in the input slot for
SQUARE. SQUARE uses this value to draw a square with size equal to 10.

GROWSQUARES :S1ZE + 10
GROWSQUARES calls another GROWSQUARES procedure, but adds 10

to the value of "SIZE in its input slot, and gives the new

140 / Variables

GROWSQUARES an input of 20 to put in its input slot. The entire process

starts again.

SQUARE :SIZE

SQUARE is called with an input of 20.

GRQWSQUARES :SIZE + 10

A new GRQWSQUARES is called with an input of 30 (20 + 10), and so

on. . . .

Figure 7.20: Each GROWSQUARES procedure calls another, with its input increased by
10.

As you can see from this explanation, GROWSQUARES will keep on

growing squares forever. Try it by typing

GROWSQUARES 10

To stop the process, type CTRL-G.

mamiHA

There ought to be a way to make the computer stop automatically, and

there is! You can tell it to stop the procedure when :SIZE gets bigger than a

certain value.

Suppose the largest size you want is 100. Add the following command

to GROWSQUARES:

IF :SIZE > 100 [STOP]

IF, STOP and > are all Logo commands. This type of command is

sometimes called an IF statement, a conditional or a STOP rule. In this ex¬

ample, IF has two inputs, a condition, :SIZE >100, and an action list,

[STOP]. When the condition is true, the action list is carried out.

Otherwise, GROWSQUARES goes on to the next line of the procedure.

The next question is, where in the procedure does the STOP rule go?

Since GROWSQUARES has only two other commands, it shouldn’t be too

hard to figure this out by experiments. There are only three possible ways.

Try them all and see what happens.

Variables / 141

i

j
1

TO GROWSQUARES1 :SIZE

SQUARE :SIZE

GROWSQUARES1 :SIZE + 10

IF :SIZE > 100 [STOP]

END

or

TO GROWSQUARES2 :SIZE

SQUARE ;SIZE

IF :SIZE > 100 [STOP]

GROWSQUARES2 :SIZE + 10

END

or

TO GROWSQUARES3 :SIZE

IF :SIZE > 100 [STOP]

SQUARE .SIZE

GROWSQUARES3 :SIZE + 10

END

One of these will not stop the procedure at all. One of them will stop it

after drawing a square of size 100. One of them will stop it after drawing a

square of size 110. Predict which one will do which and then test them all.

WFAU

Bugs like the ones found in GROWSQUARES1 and GROWSQUARES2

are very common. It seems natural to put the STOP rule last, like

GROWSQUARES1. If you think a little bit, you'll see why this doesn't

work. The computer never gets to the third line in the procedure! Every

time it gets to the second line, it calls a new GROWSQUARES1 procedure

which starts from the beginning.

The problem with GROWSQUARES2 is a little different.

GROWSQUARES2 does stop, but after drawing a square that is bigger than

100. Since the STOP rule comes after the SQUARE command,

GROWSQUARES2 draws a square first, then checks to see if it is too big.

GROWSQUARES3, on the other hand, checks to see if the size is too

big before drawing the square. So when :SIZE is 110, GROWSQUARES3

will stop before drawing a square of that size.

GROWSQUARES uses one of the most important ideas in all computer

programming. Do something using variables. Check to see if a condition is

true. If it isn’t true, change the variables and keep the process going. If it is

true, stop the whole process. You will see this idea again and again in this

book and anywhere you do things with computers.

nmm ibea

142 / Variables

EXfURJffM

Add a STOP rule to GROWHOUSES. Check to be sure it does exactly

what you want.

Make some other growing designs using different shapes. Give them

STOP rules too.

HEtnkJS HUT

The best way to help people understand this type of process is to step through a

procedure line by line, the way I stepped through GROWSQUARES. Sometimes this is called

playing computer, which is a lot like playing turtle—pretend you’re the computer, and decide

exactly what to do as you come to each command. Then pretend to he each procedure. Each

procedure can be thought of as a “worker” with a job to do. (You could even do this as a

play, with several people taking the role of different procedures.)

It’s especially important that each time a GROWSQUARES worker is called upon to do

its job, it be thought of as a new worker rather than as “GROWSQUARES starting over.” In

other words, the old GROWSQUARES worker calls on a new GROWSQUARES worker and

gives it a new input (in this case, by adding ten to the old input). The old GROWSQUARES

then waits until the new GROWSQUARES is finished before it can go on to its next line (in

this case, END). The idea that each procedure has to wait until the next one is finished is one

of the hardest things to understand. Figure 7.21 shows this process at work.

Figure 7.21a: Think of each GROWSQUARES procedure as being different from the last.

Figure 7.21b: Each “old” GROWSQUARES has to wait for the “new” GROWSQUARES
to finish its work.

Variables / 143

Section 7.6.
More Procedures that
Grow and Stop

niffixm IMA

This kind of “explanation” may seem like overkill at this point, since GROWSQUARES
is relatively easy to understand. However, talking about procedures as workers who give
commands to other workers helps to explain a lot about some of the much more complicated
procedures that you will encounter later. This example establishes a metaphor for talking
about ways that more complicated procedures really work and for debugging them when

necessary.

SPINSQUARES2 in Section 7.4 had two inputs.

TO SPINSQUARES2 :SIZE :ANGLE

SQUARE :SIZE

RIGHT :ANGLE

SPINSQUARES2 :SIZE :ANGLE

END

Try it with several different inputs.

Figure 7.22: Designs created by using different sets of inputs for SPINSQUARES2.

Now let’s add a stop rule to SPINSQUARES2 so that it stops after

drawing the complete design once.

Since we don’t know the number of squares in the design (that depends

on the angle input), the simplest stop rule is one that tells the computer to

stop when the turtle returns to its starting position. In this case, since the

turtle started pointing straight up, it should stop when it’s pointing straight

up again; that is, when its heading is equal to 0 again.

TO SPINSQUARES3 :SIZE :ANGLE

SQUARE :SIZE

RIGHT :ANGLE

IF HEADING = 0 [STOP]

SPINSQUARES3 :SIZE :ANGLE

END

SPINSQUARES3 will stop after drawing its design once.

144 / Variables

fmm, IMA

HEtnid nun

Here’s how the STOP rule IF HEADING = 0 STOP works. HEADING

is a Logo command that sends a message giving the heading of the turtle.

To see this, turn the turtle and tell Logo to print its heading.

DRAW

RIGHT 45

PRINT HEADING

45
RIGHT 90

PRINT HEADING

135
etc.

= is also a Logo command. It needs two inputs. It sends a message

with the word "TRUE if its two inputs are the same or the word "FALSE if

its two inputs are different. You can see this work when you type

PRINT 5 = 4+1

TRUE
PRINT 3 = 0

FALSE
etc.

IF is a Logo command that needs to be given either the word "TRUE or

the word "FALSE as an input. When IF receives "TRUE as an input it car¬

ries out its list of actions (in this case, the command STOP). When IF re¬

ceives an input of "FALSE, it skips the rest of the line, and the computer

goes on to the next line.

It’s worth looking at this one example in even more (detail. This one line

IF HEADING = 0 [STOP]

contains four Logo primitives (built-in commands), IF, HEADING, =, and STOP. Think of

each command as a worker with a job to do. The jobs these workers do involve messages that

they send and receive. Look at the sequence in which this conditional line is carried out.

First, IF looks for an input. It calls on = to send it a message. IF gives = two inputs. The

first input is the number 0. The second tells = to call on the Logo command HEADING to

obtain its second input.

Figure 7.23a

Variables / 145

HEADING sends = a message giving the turtle’s current direction.

Figure 7.23b

= compares the message sent by HEADING with the number 0. If the two numbers were

the same, it would send IF the message, 'TRUE. In this case, the turtle s heading is not the

same as 0, so = sends the message "FALSE.

Figure 7.23c

Now, IF has its input. If its input were "TRUE, it would tell the SPINSQUARES3 to carry

out its action list, stopping the procedure. In this case, its input is "FALSE. Accordingly, it

tells the procedure to ignore the rest of the line, and go directly on to the next line.

Now the process continues. IF calls =, giving it inputs of 0 and HEADING.

Variables / 147

This time, = sends IF the message 'TRUE. Since IP’s input is 'TRUE, the action list

containing the STOP command is carried out, making the SPINSQUARES3 procedure stop

working, and letting the procedure that called it continue.

Figure 7.23h

Figure 7.23i

When this procedure stops, the procedure that called it will be able to finish. So will

the procedure that called it. and so on, up the line. Each procedure has been waiting for the

one that is called to stop, so that it can go on to its next line. The next line in each procedure

is the command END. So as soon as a SPINSQUARES3 procedure gets word that the one

that it called has stopped, it can also stop in turn.
The important idea here is that the procedures stop, one at a time, each one in its turn.

The STOP command in the last procedure makes only that one procedure stop, not the whole

process.

148 / Variables

Figure 7.24: After the last procedure stops, each waiting procedure stops in the reverse
order from that in which it was called.

Now, let’s make a new procedure that makes SPINSQUARES3 grow.

I’ll call this procedure GRSPSQ (short for “grow-spin-squares”).

TO GRSPSQ :S1ZE :ANGLE

IF :S1ZE > 100 [STOP]

SP1NSQUARES3 :SIZE :ANGLE

GRSPSQ (.SIZE + 20) :ANGLE

END

The parentheses around (:SIZE + 20) in the last line are not needed by

Logo. Logo will do the same thing with or without them. They are there to

help people who read the procedure understand that (:SIZE + 20) is one in¬
put to GRSPSQ.

The angle input determines shape of the design. The size input will de¬

termine the starting size. Figure 7.25 shows two examples.

Figure 7.25: Designs created by GRSPSQ :SIZE :ANGLE.

Variables / 149

EKfUfWm

• Try GRSPSQ with a lot of different angle inputs. (The size input really

doesn’t do much in this case.)

• Remove the STOP rule from the procedure and see what happens to

your design as the shapes wrap around the screen.

• Make other procedures like GRSPSQ, using shapes other than squares

as the starting point. For example, a triangle or even a flower might

make a nice design.

Figure 7.26: Spinning designs made using triangles instead of squares.

150 / POLY and Its Relatives

CHAPTER 8

Short
Command Form Examples With Inputs

MAKE MAKE "START HEADING
MAKE "SIZE 50
PRINT 35 - 10
FORWARD :SIZE - 10

* PRINT 3*5, FORWARD :SIZE * 3

LWAL Procedures Disk files used: none
New tool procedures used: none

r POLY and Its Relatives / 151

8

Section 8.1.
POLY

POLY 50 90

POLY and Its Relatives

I

In this chapter you’ll learn many more ways of creating and exploring

geometric designs. If you enjoy the mathematical part of the designs,

you’ll learn a lot of mathematics. If you prefer just making designs, this

chapter will show you how to create many more designs with the turtle. If

you’d rather do something else with Logo besides turtle drawings, skip this

chapter for now, and go on to Chapter 9.

In Chapter 7, Section 7.3, a procedure named STAR2 was used to make

stars of different sizes and shapes. The same procedure can also be used to

make many different polygons. In this chapter, we’ll give that procedure a

different name; we’ll call it POLY.

TO POLY :SIZE :ANGLE

FORWARD :S1ZE

RIGHT :ANGLE

POLY :SIZE :ANGLE

END

POLY needs two inputs, a size and an angle. The first line of POLY

tells the turtle the size to draw each line. The second line tells it the angle

to turn each time. The third line tells POLY to call another POLY procedure

with the same inputs, and so on. . . . This POLY procedure will never stop

unless you type CTRL-G. Here are a few designs made with POLY.

POLY 100 170

Figure 8.1: Designs made with POLY :SIZE ’.ANGLE.

152 / POLY and Its Relatives

ocnmmH

Since POLY can do many different things, it would be a good idea to

keep records of everything you do in your Logo journal. Next to each set of

inputs, write down what happened. Make a special note for any designs that

are interesting enough to try again. A chart like the one shown here is a

good way to keep track of explorations with POLY.

Size Angle Polygon(P)
or Star(S)

Number
of sides

Does it Wrap(w)
around the screen?

30 30 P 12 n
60 30 P 12 w
30 60 P 6 n
30 80 S 9 n

etc.

Here are some explorations you can try:

• Experiment with any input numbers you can think of for both size and

angle. Use tiny numbers as well as very large ones to see what hap¬

pens.

• Use a lot of different number combinations. The results might surprise

you! Try inputs like POLY 99 99, POLY 12 345, POLY 6 600, and so

on.

• Pick one number for the size input—50, for example. Then keep that

number the same every time, and change the angle input.

POLY 50 50, POLY 50 75, POLY 50 100, POLY 50 150,

POLY 50 1000, and so on.

• Keeping the size the same, see if can find the angle needed to draw

these polygons: square, triangle, hexagon (6 sides), octagon (8 sides),

and nonagon (9 sides). A pentagon (5 sides) might be a little harder. As

a special challenge, try to make a heptagon (7 sides).

• Still keeping the size constant, try drawing some stars with different

numbers of points—5 points, 8 points, 9 points, etc. Use your chart to

keep track of the angle inputs you use, and the number of points each

star has.

• Now keep the angle input the same, and see what happens when you

change the size.

POLY 10 100, POLY 50 100,

POLY 100 100, and so on.

• Use very small numbers for both POLY inputs.

POLY 1 2, POLY 2 5, POLY 5 1, and so on.

• Use a “normal” size input like 50 and 100 with tiny angle inputs like 1
or 2.

POLY 100 1, POLY 100 2, POLY 100 3, and so on.

• Use a “normal” size input with giant angle inputs like 1000 or 20000.

POLY 100 1000, POLY 100 5000,

POLY 100 20000, and so on.

t

POLY and Its Relatives / 153

pmgm MA

• Use “normal” angle inputs like 60 or 150 with tiny size inputs or giant

size inputs.
POLY 1 150, POLY 3 60, and so on or

POLY 1000 150, POLY 5000 60, and so on.

• Keep both inputs equal. Use all kinds of numbers—small, medium and

large.

POLY 1 1, POLY 2 2, POLY 20 20,
POLY 90 90, POLY 150 150, POLY 1000 1000, and so on.

• Try some very special angles, and see what happens.

POLY 20 0, POLY 20 180, POLY 20 360

• Write down your own ideas for POLY explorations, and try them.

There is a mathematical rule connecting the number of sides (or points)

^ of a POLY shape with the angle input that is used to make it. Have you dis¬

covered it yet? If you know the rule, you can predict how many sides a

^ POLY design will have for any angle. Here’s a little quiz. I’ll tell you an an¬

gle, and you guess how many sides there will be. Write down your guess,

and then check to see if you were right. You’ll have to try it out on the

computer to find out. (The first group of angles all draw polygons. The sec¬

ond group all draw stars.)

• How many sides for each of these angles: 30, 60, 90, 120, 180?

• Can you find a rule connecting the number of sides with the angle?

• How about these: 80, 150, 160, 200?

• Can you find a rule for these angles?

I’ll give you one hint—the rule involes the number 360. Every time the

turtle comes all the way back to where it started, it turns exactly 360 de¬

grees at least once. This is sometimes called the Total Turtle Trip Theorem.

A Total Turtle Trip is a series of steps that brings the turtle back to exactly

the same position and heading from which it started.

Figure 8.2: A “Total Turtle Trip.” The turtle returns to where it started.

154 / POLY and Its Relatives

Section 8.2.
Making POLY Stop

Improving the Stop Rule

Here’s another way to say the Total Turtle Trip Theorem: Whenever it

makes a total turtle trip, the turtle turns exactly 360 degrees one or more

times. It might turn 360 degrees once, twice (720 degrees total), three times

(1080 degrees total), or more.

That’ s as much as I will tell you about the rule connecting the angle

and the number of sides of a POLY shape. When you know the rule, you’ll

be able to predict the number of sides correctly for every polygon and star.

You won’t need me (or anyone else) to tell you if you’re right.

It would be nice if POLY made the turtle stop drawing, once its design

was complete. All we have to do is add a conditional command to POLY,

telling the computer to check and see if the turtle is back where it started:

TO POLY :SIZE :ANGLE

FORWARD :SIZE

RIGHT :ANGLE

IF HEADING = 0 [STOP]

POLY :SIZE :ANGLE

END

HEADING is a Logo command that tells which way turtle is pointing at

any time. When the turtle starts after a CLEARSCREEN command, its

HEADING is always 0. So we tell the computer to check whether the tur¬

tle’s heading is 0 again. If it is, the turtle is back where it started, and POLY

should stop. Try the new POLY now and see what happens. If it works

properly, you should be able to make a design like those in Figure 8.3.

-te *

Figure 8.3: Designs made with the new POLY.

You might have a problem with POLY if it starts drawing with the tur¬

tle heading somewhere other than 0. If that’s the case, POLY may stop in

the wrong position or even never stop because the turtle’s original heading

POLY and Its Relatives / 155

wasn’t 0. To fix this, we must make the procedure a little more complicat¬

ed. Edit POLY to read like this;

TO POLY :SIZE :ANGLE

FORWARD :SIZE

RIGHT :ANGLE

IF HEADING = :START [STOP]

POLY :SIZE :ANGLE

END

This uses the new variable :START, which stands for the turtle’s origi¬

nal heading. But we haven’t told the computer what value to use for start.

If you type

POLY 50 100

Logo will complain that “START HAS NO VALUE. ...” One way to give

iSTART a value is to use the command MAKE.

MAKE "START HEADING

MAKE needs two inputs. The first is the name of a variable, and the

second is its value. The command MAKE "START HEADING gives the vari¬

able named "START a value equal to whatever HEADING the turtle has

right now. Now type

POLY 50 100

Since .START does have a value now, POLY should do the right thing.

Clear the screen. Turn the turtle to any angle you like, and repeat this proc¬

ess.

CLEARSCREEN

RIGHT 99

MAKE "START HEADING

POLY 45 45

(You can use any angle as an input for RIGHT.)

1

I

mFAU

When you use MAKE, the first input is always a name. In Logo, a

name is indicated by using a " symbol in front of a word like "JOHN,

"SALLY, or "START. The : symbol is used for the value of the variable.

"START is not the same as iSTART. Try this to demonstrate the difference.

PRINT "START

PRINT :START

Of course it would be boring to have to type MAKE "START HEADING

every time you want the turtle to draw a POLY. So let’s put it into a new

superprocedure called POLY1 that uses POLY as a subprocedure.

I

i

TO POLY1 :SIZE :ANGLE

MAKE "START HEADING

POLY :SIZE :ANGLE

END

Now try

POLY1 50 90

RIGHT 45

POLY1 50 90

No matter where the turtle is on the screen, POLY1 should draw a de¬

sign and then stop. Here are some designs that can be made with POLY1.

Try some of them. If you have a color TV, add some color variations.

Figure 8.4: Designs made with POLY1.

POLY and Its Relatives / 157

\j

POLY1 is a very special kind of superprocedure. Its only job is to set

up the start of another procedure. In this case, it creates a value for the

variable named "START and then calls POLY, which uses :START. This

type of idea is very important in more complicated programs. WeTl use it

often from now on.

nmmiBSA

Section 8.3.
Thinking More About
Stop Rules

You can read this section now if you want to learn more about Stop

rules. If you prefer to make more designs, go on to Section 8.4, “Polyspir¬

als;” then come back and read this section later.

EXHMKTM

The correct position of a STOP rule in a procedure is very important.

All four of the procedures below are identical except for their names and

the locations of their STOP rules. Try each variation and see what happens.

TO POLYA :SIZE ANGLE

IF HEADING = 0 [STOP]

FORWARD :SIZE

RIGHT ANGLE

POLYA :SIZE ANGLE

END

TO POLYB :SIZE ANGLE

FORWARD :SIZE

IF HEADING = 0 [STOP]

RIGHT ANGLE

POLYB :SIZE ANGLE

END

TO POLYC :SIZE ANGLE

FORWARD :SIZE

RIGHT ANGLE

IF HEADING = 0 [STOP]

POLYC :SIZE ANGLE

END

TO POLYD :SIZE ANGLE

FORWARD :SIZE

RIGHT ANGLE

POLYD ;SIZE ANGLE

IF HEADING = 0 [STOP]

END

158 / POLY and Its Relatives

mt

One of the most common bugs in any computer program is having a

conditional command in the wrong position. Understanding these four pro¬

cedures will help you debug this kind of problem. Think through each of the

procedures step by step and try to explain why only POLYC does the right

thing and exactly why each of the other variations doesn’t work.

This exploration is very useful for understanding the kinds of things that can go wrong
with conditionals. In helping someone understand this, there are two important things to
stress.

First, think through the procedure step by step. Sometimes this is called playing

computer. Like playing turtle, this involves putting yourself in the computer’s place and
deciding what it would do for each step. Then try the procedure and see what really happens.

Second, it’s very important to force yourself to explain what you expect to happen, and
then explain what you think really happened after you’ve tried it. A major source of
confusion with computers is the gap between what someone expects to happen and what
really happens. Since this happens to everyone, it’s critical to be able to do this kind of
exercise.

There are many ways to explain these things, and no single explanation is best. Since the
real learning comes when you confront the difference between what you expected and what
really happened, it’s important to establish an atmosphere in which people can talk about
these things without embarrassment, without feeling judged. This can be especially hard in a
classroom, where students are usually expected to know the “correct” answer to something
before they speak. The most important objective here would be to break down that
expectation. In its place, it would be great to establish an expectation of free discussion of the
ways people are thinking about what the computer is doing. An exchange of ideas about what
the computer is doing can be a wonderful way to help everyone in the discussion debug
misconceptions about what is really happening.

If you are a teacher or parent, the best way to foster this type of atmosphere is to expose
bugs in your own thinking. More than anything else, this will help the learners you’re working
with develop the confidence to risk explaining their thinking in public.

POLY and Its Relatives / 159

Section 8.4.
Poiyspirals

In Chapter 7 variables were used to make shapes grow in procedures

like GROWSQUARES and GROWSPINSQUARES.

Figure 8.5: GROWSQUARES and GROWSPINSQUARES.

Polyspirals are first cousins to polys. They are polys that grow. In a

polyspiral, the size variable is increased or decreased each time the proce¬

dure is repeated.

TO POLYSPI :SIZE :ANGLE
FORWARD :SIZE
RIGHT lANGLE
POLYSPI (:S1ZE + 1) :ANGLE

END

Figure 8.6 shows two examples.

160 / POLY and Its Relatives

POLYSPI 1 45

Figure 8.6: Polyspiral designs.

POLYSPI 1 90

Binmim

• Try POLYSPI with a lot of different angle inputs. Some of the most in¬

teresting designs are made with angles that are close to (but not the

same as) the angles used for a particular star or polygon.

POLYSPI 1 88 POLYSPI 1 90 POLYSPI 1 92

POLYSPI 1 118 POLYSPI 1 120 POLYSPI 1 122

Figure 8.7: More polyspiral designs

POLY and Its Relatives / 161

• Let some polyspis grow very large before stopping them with

CTRL-G. See what happens as the designs wrap around the screen.

One way to vary the procedure is to change the amount of the increase

in size by adding another variable, :INC. (INC is short for “increase. I use

INC rather than INCREASE because it’s easier to type.)

TO POLYSPI2 ;SIZE :ANGLE :INC

FORWARD -.SIZE

RIGHT lANGLE
POLYSPI2 (:SIZE + :INC) :ANGLE ;1NC

END

POLYSPI2 1 45 1 POLYSPI2 1 45 3

Figure 8.8: Varying the increase in a polyspiral design.

The third input controls the amount of increase in size each time.

SXnMKtM

Try POLYSPI2 with a lot of different values for :INC. Another variation

is to include a STOP rule in the procedure.

TO POLYSPIS :SIZE :ANGLE :INC

IF :SIZE > 100 [STOP]

FORWARD :SIZE

RIGHT :ANGLE

POLYSPIS (:SIZE + :INC) :ANGLE :INC

END

Still another variation has the forward step start large and grow smaller

each time through the procedure. (DEC is short for DECREASE.)

TO POLYSPI4 ;SIZE ANGLE :DEC

IF :SIZE < 1 [STOP]

FORWARD -.SIZE

RIGHT ANGLE
POLYSPI4 (:SIZE - :DEC) ANGLE :DEC

END

162 / POLY and Its Relatives

Figure 8.9: Polyspirals with decreasing sizes.

Here are some designs that put several polyspis together. The trick in

making interesting designs like this is to choose POLYSPI angles and rota¬

tions that work well together. Figure 8.10 shows some combinations that I
like.

q]

in

!

Figure 8.10: Combining decreasing polyspirals.

POLY and Its Relatives / 163

Here’s one last variation. You might see a POLYSPI design differently

if you could see only the corners instead of the sides. POLYSP15 uses
PENUP and PENDOWN in such a way that you only see the corners of the

design.

TO POLYSP15 :S1ZE :ANGLE :DEC

IF :S1ZE < 1 [STOP]
PENUP FORWARD :SlZE
PENDOWN FORWARD 1 BACK 1

RIGHT :ANGLE
POLYSP15 (;SIZE - :DEC) :ANGLE :DEC

END

POLYSPI5 100 90 2

POLYSPI5 100 122 2

H

POLYSPI4 100 90 2

POLYSPI4 100 122 2

Figure 8.11: Polyspirals with only the “points” showing and those with full lines showing.

Watch what happens as the angle changes by 5 degrees.

164 / POLY and Its Relatives

POLYSPI5 100 105 2 POLYSPI4 100 105 2

Figure 8.12: Slight changes in the angle of polyspiral designs.

Section 8.5. Inspirals are also cousins of POLY and POLYSPI. Instead of changing
Inspirals the size after every turn, the angle is increased or decreased.

TO INSPI ;S1ZE :ANGLE
FORWARD :SIZE
RIGHT :ANGLE
INSPI :SIZE (:ANGLE + 10)
END

POLY and Its Relatives / 165

Figure 8.13: Inspiral designs.

The amount of the increase can also have an effect on the overall

shape. Adding another variable makes it easier to experiment with this.

TO INSPI2 :SIZE .ANGLE :INC

FORWARD :SIZE

RIGHT ANGLE

INSPI2 :SIZE (ANGLE + :INC) :INC

END

Changing the starting angle and the amount of increase both affect the

overall design in surprising ways.

f

J

166 / POLY and Its Relatives

INSPI2 20 10 5

INSPI2 20 10 10

Figure 8.14: Varying the increase in an inspiral design.

There are many interesting designs that can be made by changing the

second and third inputs of INSPI2. The complete mathematical rule for

INSPI designs is very complicated. Here are some interesting questions

to investigate.

Which combinations of inputs to INSPI2 make designs with only two

clusters? Which ones produce three clusters? Four clusters? Etc.

EKfmnm

POLY and Its Relatives / 167

Figure 8.15: INSPI2 designs with two, three, four, and twelve clusters.

• Which combination make designs that never come back to where they

started?

Figure 8.16: An INSPI2 design that doesn’t come back to its starting point.

Write down in your journal any discoveries about inspiral designs and

see how much you can find out about them.

168 / POLY and Its Relatives

Section 8.6.
More POLY Relatives

pmgm IMA

If you’ve enjoyed the explorations and designs in this chapter, you

might also enjoy a book called Turtle Geometry, by Harold Abelson and

Andrea diSessa. It has many more ideas for explorations with the turtle.

I’ve borrowed a few ideas from that book to end this chapter. There are

many possible variations for POLY, POLYSPI, and INSPI. I’ll show you

some of them and hope you invent lots more of your own.

First, let’s look at 2POLY.

TO 2POLY :S1 :A1 :S2 :A2

FORWARD :S1 RIGHT :A1

FORWARD :S2 RIGHT :A2

2POLY :S1 :A1 :S2 :A2

END

2POLY just uses two different poly steps instead of one, and it needs

four inputs. :S1 and :S2 are short for :SIZE1 and :SIZE2, and :A1 and ;A2

for :ANGLE1 and :ANGLE2. It’s nice to try positive and negative inputs for

both sizes and angles. Put negative inputs in parentheses so the computer

won’t try to subtract. Try this one:

2POLY 50 45 (-25) 90

Telling the turtle to go FORWARD (-25) is the same as telling it to go

BACK 25. Telling it to turn RIGHT (-30) is the same as telling it to turn

LEFT 30. Try this out for yourself and see.

Figure 8.17: Designs made by 2POLY.

POLY and Its Relatives / 169

Another really simple variation for POLY is to switch the angle and size

inputs every time.

TO SWITCHPOLY :SIZE ANGLE

FORWARD :SIZE

RIGHT ANGLE

IF HEADING = 0 [STOP]

SWITCHPOLY ANGLE :SIZE

END

Notice that the two variable names are reversed in the last line. You

can have a lot of fun with this one.

Figure 8.18: SWITCHPOLY designs.

Here’s another variation. Instead of making a “poly step” consist of

just forward and turn, make it draw a figure as well. First you need to teach

the computer how to TRIANGLE :SIZE, of course.

TO POLYTRI :SIZE ANGLE

TRIANGLE :SIZE

FORWARD :SIZE

RIGHT ANGLE

IF HEADING = 0 [STOP]

POLYTRI :SIZE ANGLE

END

Relatives

Figure 8.19; Designs made by POLYTRI.

Of course, you could use any shape you wanted in place of the triangle.

Here’s an interesting one called a “scissors.”

TO SCISSORS :SIZE ;ANGLE

RIGHT :ANGLE

FORWARD :SIZE

LEFT 2 * :ANGLE

FORWARD :SIZE

RIGHT ;ANGLE

END

SCISSORS 40 60

Figure 8.20: A SCISSORS design.

When this is used in a POLY, I call it a POLYSCI.

TO POLYSCI :SIZE :ANGLE

SCISSORS ;SIZE :ANGLE

RIGHT :ANGLE

POLYSCI :SIZE :ANGLE

END

POLY and Its Relatives / 171

Figure 8.21: Designs made by POLYSCI.

These can be made even more interesting if the angle for the scissors is

not the same as the angle for the “poly step.”

TO POLYSCI2 :SIZE :A1 :A2

SCISSORS :SIZE :A1

RIGHT :A2

POLYSCI2 :SIZE :A1 :A2

END

Figure 8.22: POLYSCI2 designs.

172 / POLY and Its Relatives

Any of these shapes can be made into polyspirals or inspirals by in¬

creasing the size or angle each time.

For one final example, let’s look at a spirolateral, a geometric shape

that is based on the idea of a poly spiral. The difference is that the length in¬

creases for a fixed number of times. Then the whole shape is repeated until

the figure is complete. For example, Figure 8.23 shows a 90 degree poly¬

spiral repeated 7 times. Then that whole shape is repeated.

SPIRO 10 90 7

Figure 8.23: Spirolateral designs.

Here are the procedures:

TO SPIRO :S1ZE :ANGLE :NUMBER

IF :NUMBER = 0 [STOP]

FORWARD :S1ZE

RIGHT :ANGLE

SPIRO (:SIZE 10) :ANGLE (:NUMBER - 1)

END

TO SPIROLATERAL :ANGLE :NUMBER

SPIRO 10 :ANGLE :NUMBER

SPIROLATERAL :ANGLE :NUMBER

END

\ a

SPIRO is a procedure that counts. It is almost the same as POLYSPI

(Section 8.4) except that it has one more variable, :NUMBER, that tells it

exactly how many poly steps to take. Every time SPIRO is called,

:NUMBER is decreased by one. When it counts down to zero, the procedure

stops. All that SPIROLATERAL does is keep calling the procedure SPIRO

with a fixed size input of 10.

nmmiBEA

POLY and Its Relatives / 173

We can vary the size of a spirolateral if we make the increase in

size a variable in SPIRO and let the starting size be a variable in

SPIROLATERAL. SPIROLATERAL and SPIROLATERAL2 draw the same

shapes, but SPIROLATERAL2 can have different sizes.

TO SPIR02 :SIZE :ANGLE :INC :NUMBER

IF iNUMBER = 0 [STOP]

FORWARD :SIZE

RIGHT :ANGLE
SPIR02 (:SIZE + :INC) lANGLE :INC (iNUMBER - 1)

END

TO SPRIOLATERAL2 :SIZE :ANGLE iNUMBER

SPIR02 :SIZE :ANGLE :SIZE :NUMBER

SPIROLATERAL2 :SIZE :ANGLE :NUMBER

END

When SPIROLATERAL2 calls SPIR02, it uses the same value for both

the :SIZE and ;INC variables of SPIR02. This little trick keeps the shapes

proportional to each other.

Figure 8.24: More spirolateral designs.

174 / POLY and Its Relatives

mLKkjS HUT

The most interesting mathematical question about spirolaterals have to

do with the fact that some spirolaterals make closed shapes that keep re¬

peating themselves while others go oflF wrapping around the screen forever.

Figure 8.25: Closed and open spirolaterals.

Which combinations of angles and numbers will make closed shapes,

and which ones will make shapes that don’t return to their starting points?

The answer to this question is very similar to the rule connecting the num¬

ber of sides to the angle of a POLY (Section 8.1).

The emphasis in this chapter is on making designs and exploring questions about them.
Someone might want these shapes used more explicitly to teach mathematics. I’m quite sure

that someday all these lovely shapes will be part of the mathematics curriculum for everyone.

I can’t help feeling that some of the loveliness will be lost when that happens. Abelson and

diSessa’s Turtle Geometry is a college-level textbook that goes a long way towards capturing

both the mathematics and the fun of explorations with the turtle. I recommend it both for the

spirit in which the learning of mathematics has been combined with the aesthetics of turtle

explorations and for the hundreds of fascinating turtle projects described in it.

If you are interested in enhancing the mathematical learning of someone using this book,

I have a few suggestions. First, emphasize the finding of patterns made by families of shapes,

patterns that relate numbers to shapes. The angle numbers are most critical in determining

patterns.

People often get confused dealing with a lot of different variables. Isolating the effect of

one variable at a time is another important idea that can be learned through these activities. I

have discovered, however, that this idea is not obvious or even interesting to many people at

first. Some people have to look at many facets of a situation before they are willing to settle

down and isolate one for exploration. Too many teachers force their students into a mold of

“rational exploration’’ before they are ready to focus on one aspect of a situation. It is my

experience that when a student is ready for a structured exploration, he or she can appreciate

the value (even the beauty) of isolating variables. On the other hand, students forced into a

rational mode while they are still exploring the whole of a phenomenon can become

convinced that mathematics and science are boring. In this way I believe that we discourage

many students who might otherwise become creative scientists or mathematicians.

POLY and Its Relatives / 175

The moral is that it’s a good idea for a teacher to have a large “bag of tricks’’ containing

many suggestions to help students rationalize their thinking processes and to help them be

more creative in their explorations. Above all, it is imporant to be sensitive to just which

suggestions will most further a student’s real learning goals at a particular moment. This is a

subtle skill that makes teaching more of an art than a science. In preparing this chapter I tried

to plant seeds of both rational exploration of mathematical patterns and creative explorations

of artistic ones. Let each learner, each teacher, take from it what is best for him or her at the

moment.
End of sermon!

176 / Conversations with the Computer: Activities with Numbers, Words, and Lists

CHAPTER 9

Command
Short
Form Examples With Inputs

/ PRINT 360 / 3, RIGHT 360 / 3
WORD PRINT WORD "HEL "LO

SENTENCE SE
PRINT (WORD "A "B "C)
PRINT SENTENCE [HELLO] [THERE]

FIRST

PRINT SENTENCE "HELLO [THERE]
PRINT SENTENCE "HI "FRIEND
PRINT (SE [HELLO] [MY] [FRIEND])
PRINT FIRST "HELLO

BUTFIRST BF
PRINT FIRST [HELLO THERE FRIEND]
PRINT BUTFIRST "HELLO

LAST
PRINT BF [HELLO THERE FRIEND]
PRINT LAST "HELLO

BUTLAST BL
PRINT LAST [HELLO MY FRIEND]
PRINT BL "HELLO

READLIST RL
PRINT BUTLAST [HELLO MY FRIEND]
MAKE "ANSWER READLIST

CLEARTEXT
TYPE TYPE [GUESS A NUMBER]
RANDOM PRINT RANDOM 20
TEST TEST ANSWER = 7
IFTRUE IFT IFTRUE [PRINT [HOORAY!]]
IFFALSE IFF IFFALSE [PRINT [SORRY]]
AND (IF AND :NUM1 = 1

OR 1

1 :NUM2 = 0 [PRINT [OKAY]]
[IF OR :ANS = [TWO]
1 ;ANS = [] [PRINT [RIGHT!]]

LWAL Procedures Disk files used: "READNUMBER, "GUESSNUMBER,
"MATHQUIZ

New tool procedures used:

Tool Procedures Examples

READNUMBER MAKE "ANSWER READNUMBER

Conversations with the Computer: Activities with Numbers, Words, and Lists / 177

9 Conversations with the
Computer: Activities with
Numbers, Words, and Lists

This chapter explains more about how Logo keeps track of information

and tells you how to carry on conversations with the computer. It

shows how Logo uses three different kinds of information numbers,

words, and lists. The ideas in this chapter will also help you understand

something about how computers do what is called dotci processing. Data

processing involves making the computer take in, store, change, and print

information. Often it involves some kind of interaction between the comput¬

er and the person who is using it. This chapter is an introduction to interac¬

tive Logo procedures.

Section 9.1.
Numbers, Words, and
Lists

PRINT 4 + 5

PRINT 36-6

PRINT 36 / 7

PRINT (3 + 5) * 7

The parentheses around 3 + 5 tells the computer to add 3 and 5 first

and then multiply their sum by 7. Compare what happens when you type

the line without parentheses.

PRINT 3 + 5*7

In this case, Logo multiplies 5 and 1 first and then adds 3. When there

are no parentheses, Logo will always multiply or divide before it adds or

subtracts.
These examples show how Logo compares numbers:

PRINT 5 = 7

PRINT 5 = (7 - 2)

PRINT 5 > 7

PRINT 5 < 7

Information used by a computer is called data. Logo can handle three

different kinds of data: numbers, words, and lists.

Numbers are just what you think they are—good old everyday num¬

bers, large and small, positive and negative. Logo can add, subtract, multi¬

ply, and divide. It can also compare two numoei s to see if they are equal or

to see which one is larger or smaller. Try these examples:

178 / Conversations with the Computer; Activities with Numbers, Words, and Lists

The expression 5 > 7 is a question: “Is 5 greater than 11" (Naturally,

Logo should answer FALSE.) The expression 5 < 7 asks Logo, “Is 5 less

than 11" (Logo should answer TRUE.) Logo does not need parentheses in

the command PRINT 5 = (7 - 2) since it always does arithmetic before

comparing, but I often use parentheses to make some lines clearer for a per¬

son who might be reading them.

Words in Logo are a lot like normal everyday English words, even

though they may not always make sense to you or me. Almost any combi¬

nation of symbols can be part of a Logo word. A " symbol before a word

shows that whatever follows is a Logo word. A " symbol is never used after

a word in Logo. This is one way that Logo is different from ordinary En¬

glish and from many other computer languages. Almost any combination of

symbols can be part of a Logo word. Logo words can be made from almost

any keyboard symbols. Try these examples:

PRINT "HELLO

PRINT "ABCXYZ

PRINT "R2D2

PRINT "AB.$ -)**

PRINT "3 + 4

One very important use of words in Logo is as names for variables or

files. You have been using Logo words for file names ever since Chapter 4.

Numbers are also Logo words. They can be used with or without "

symbols.

PRINT "25

PRINT "25 + "25

A " symbol with nothing after it is called an empty word. You can use

an empty word to make Logo print a blank line.

PRINT "

A Logo word ends when you type a space. Nothing after the space is

part of the word. Try this:

PRINT "HELLO THERE

The computer prints the word "HELLO, but since there is no quote in

front of THERE, Logo thinks that THERE is meant to be a procedure. Try

the same command with " in front of THERE:

PRINT "HELLO "THERE

This time Logo knows that 'THERE is a word, but it doesn’t know

what to do with it.

Lists are Logo’s way of combining words into groups. A list is con¬

tained within square brackets, [and], and can include words, numbers, and

even other lists. Try these examples:

Conversations with the Computer: Activities with Numbers, Words, and Lists / 179

Section 9.2.
Commands for Using
Words and Lists

mFAU

PRINT [HELLO THERE]

PRINT [1 2 3 4 5 6]

PRINT [MY NAME IS DAN]

PRINT [THIS IS A LIST: [THIS IS A LIST:]]

PRINT [[A B] [C D] [E F]]

A list with nothing in it, [], is called an empty list. Like an empty

word, an empty list can be used to print a blank line.

PRINT []

Logo has a number of commands that can be used to combine words

into bigger words, to combine words into lists, or to combine words and

lists into bigger lists. It also has commands that take words and lists apart.

WORD is a Logo command that takes two words as inputs and outputs

the combination as one bigger word.

PRINT WORD "BIG "WORD

PRINT WORD "WO "RD

WORD can have more than two inputs if the command and its inputs

are placed inside ().

PRINT (WORD "BIG "GER "WORD)

Leave a space after the last word in the group or Logo will think that

the last) is part of the last word. Watch what happens when you type

PRINT (WORD "BIG "GER "WORD)

Another common bug is to type the (after the WORD command. This

will also confuse Logo and make it complain.

PRINT WORD ("BIG "GER "WORD)

SENTENCE is used to combine words and lists into one bigger list. Or¬

dinarily it has two inputs. Each one can be either a word or a list.

PRINT SENTENCE "A [WORD PLUS A LIST]

PRINT SENTENCE [A LIST PLUS A] "WORD

PRINT SENTENCE "TWO "WORDS

SE is the short form of SENTENCE.

PRINT SE [TWO LISTS] [MAKE A LIST, TOO]

With parentheses, (and), around the command and its inputs,

SENTENCE can have more than two inputs.

180 / Conversations with the Computer: Activities with Numbers, Words, and Lists

PRINT (SENTENCE "THIS [WILL BECOME] [ONE LIST] "TOO)

Logo commands FIRST, LAST, BUTFIRST (or BF) and BUTLAST (or

BL) are used to take apart words and lists. See what they do with these ex¬

amples, then make up some more of your own.

PRINT FIRST "HELLO

PRINT LAST "HELLO

PRINT BUTFIRST "HELLO

PRINT BUTLAST "HELLO

FIRST and LAST output the first or last character of a word.

BUTFIRST and BUTLAST output everything but the first or last character of

a word.

The same commands can be used for lists.

PRINT FIRST [HELLO MY FRIEND]

PRINT LAST [HELLO MY FRIEND]

PRINT BUTFIRST [HELLO MY FRIEND]

PRINT BUTLAST [HELLO MY FRIEND]

FIRST and LAST output the first and last items of a list (usually a

word). BUTFIRST and BUTLAST output a list with everything but the first

or last item of the input list. FIRST, LAST, BUTFIRST, and BUTLAST can

be combined in different ways. See if you can predict what these commands

will do.

PRINT FIRST BUTFIRST [HELLO MY FRIEND]

PRINT BUTFIRST FIRST [HELLO MY FRIEND]

BUTFIRST of the list [HELLO MY FRIEND] is the list [MY FRIEND].

FIRST of that list is the word’’Uy. Therefore, FIRST BUTFIRST [HELLO

MY FRIEND] outputs the word "MY.

FIRST of the list [HELLO MY FRIEND] is the word "HELLO.

BUTFIRST of "HELLO is the word "ELLO. Therefore, BUTFIRST FIRST

[HELLO MY FRIEND] outputs the word "ELLO.

EXfmUtM

Experiment with FIRST, LAST, BUTFIRST, and BUTLAST until you

have a good idea of what they will do. The combination FIRST BUTFIRST

[HELLO MY FRIEND] outputs the second word of that list. Can you find a

combination that will always output the third element of a list? The/oi/rt/i?

How about the second and third element from the end of a list?

READLIST, abbreviation RL, is a command that waits for the user to

type a line from the keyboard and outputs that line as a list. Here’s a funny

little procedure that uses SENTENCE and READLIST;

Conversations with the Computer: Activities with Numbers, Words, and Lists / 181

TO TALK
PRINT [PLEASE TYPE SOMETHING FOR ME TO SAY]

PRINT SENTENCE [YOU JUST MADE ME SAY] READLIST

END

When Logo carries out the READLIST command, it waits for you to

type something. Then it prints a sentence that includes what you just typed.

Try TALK a few times and see what happens.

Here’s another variation:

TO BACKTALK
PRINT [PLEASE TYPE SOMETHING FOR ME TO SAY]

PRINT SENTENCE [BUT I HATE TO SAY] READLIST

BACKTALK

END

Try BACKTALK. You’ll need to press CTRL-G to stop it.

And here’s another one:

TO AGREE
PRINT [TELL ME SOMETHING YOU LIKE]

PRINT (SENTENCE [I LIKE] READLIST [TOO])

PRINT [TELL ME SOMETHING YOU HATE]
PRINT (SENTENCE [I HATE] READLIST [EVEN MORE THAN YOU DO!])

AGREE

END

Notice the parentheses around the SENTENCE commands. They are

needed because SENTENCE has three inputs.

Try to make up some “talk” programs of your own. Can you make one

that disagrees with everything you type?

CXMMATIMr

182 / Conversations with the Computer: Activities with Numbers, Words, and Lists

HELnki HMT

The second line of the TALK procedure is an interesting one to study (see Figure 9.1). It
includes three Logo commands and two lists of information in one command line:

PRINT SENTENCE [YOU JUST MADE ME SAY] READLIST

PRINT needs an input in order to know what to print. It gets that input from the output
of the Logo command SENTENCE.

Figure 9.1a

SENTENCE needs two inputs. They could be two Logo words, two lists, or a word and a
list. In this case, PRINT give SENTENCE its first input, the list [YOU JUST MADE ME SAY],
and tells SENTENCE to call on another Logo command, READLIST, for its second input.

SENTENCE calls READLIST to get its second input.

Figure 9.1c

Conversations with the Computer: Activities with Numbers, Words, and Lists / 183

READLIST gets its input from whatever the user types at the keyboard, and then outputs

that information as a list to the procedure that called it. In this case, suppose you type

HELLO.

Figure 9. Id

READLIST outputs [HELLO] back to SENTENCE.

Figure 9.1e

SENTENCE combines [HELLO] with its first input, and outputs [YOU JUST MADE ME

SAY HELLO] back to PRINT.

Figure 9. If

184 / Conversations with the Computer:

mLKRjS HUT

Section 9.3.
Numbers, Words, and
Lists as Variables

Activities with Numbers, Words, and Lists

PRINT prints the list YOU JUST MADE ME SAY HELLO (without the brackets) on the
TV screen.

Figure 9.1g

I have deliberately introduced the term “output” in this chapter. In Logo jargon, “to
output” means to send a message with information. The information must be a number, word,
or list. The message is “sent” to whichever procedure, or command, called the command that
outputs. In most of the examples, the message was sent to PRINT, so that it was printed on
the screen.

A command or procedure that outputs information is sometimes called an “operation”.
Arithmetic commands are operations because they output numerical results. Comparison
commands like =, >, or < are operations because they output a word, 'TRUE or "FALSE.
FIRST, LAST, BUTFIRST, and BUTLAST are operations because they output words or lists.

In Chapters 7 and 8, numbers were used as variables to control or

change the size or shape of a turtle procedure. Words and lists can also be

given names, stored in the computer’s memory, and used as variables. One

way to do this is by using them as inputs to a procedure.

TO SPEAK :MESSAGE

PRINT [THE MESSAGE I AM GOING TO PRINT IS]

PRINT :MESSAGE

END

The input to SPEAK can be a word, a list, or even just a number.

SPEAK "HELLO

SPEAK [NOW IS THE TIME]

SPEAK 103

Another way to make a number, word, or list into a variable is to use

the Logo command MAKE. MAKE needs two inputs. The first input is the

name of the variable, which must be a Logo word. The second is the value

of the variable, which can be a number, word, or list.

Watch what happens when you use MAKE several times in a row, to

create a new Logo variable called "MESSAGE (see Figure 9.2). You won’t

be able to see the effect of MAKE each time until you tell Logo to PRINT

:MESSAGE. Suppose you type:

MAKE "MESSAGE [THIS IS GETTING SILLY]

Conversations with the Computer: Activities with Numbers, Words, and Lists / 185

MAKE creates a new variable with the name "MESSAGE and the value

[THIS IS GETTING SILLY],

Logo stores this value in the computer’s working memory. To see what

the new value is, type PRINT iMESSAGE

Figure 9.2b

When you change the value of the variable, MAKE creates a new vari¬

able with the same name, "MESSAGE, but a new value, "HELLO.

MAKE "MESSAGE "HELLO

Logo stores this value in the computer's working memory, and throws

away the old one. To see what the new value is now, type: PRINT :MESSAGE

186 / Conversations with the Computer: Activities with Numbers, Words, and Lists

When you use MAKE again, the process is repeated.

MAKE "MESSAGE 1000

To see the latest value of the variable with the name "MESSAGE, type

PRINT :MESSAGE ^

I
Conversations with the Computer: Activities with Numbers, Words, and Lists / 187

Figure 9.2f

Now try this. Before you do it, try to predict what will happen.

PRINT "MESSAGE
PRINT iMESSAGE

PRINT "MESSAGE tells the computer to print the Logo word

"MESSAGE. PRINT :MESSAGE tells the computer to print the value of the

variable named "MESSAGE. When you talk about these two different things

it’s a good idea to say quotes message when you refer to "MESSAGE and

dots message when you refer to :MESSAGE. This way of talking may seem

a little silly at first, but it will help you (and people you are talking to) un¬

derstand what you are talking and thinking about.

\J

The idea of giving a name to a piece of information and then using that

name to do things with the information is one of the most important ideas in

all mathematics and computer programming. It is very important to under¬

stand the difference between the name and the thing it stands for. This is

why the expressions quotes and dots are so important. They are an easy

way of saying the name, or the thing it stands for, and being absolutely

clear which is which.

MMEKm IMA

188 / Conversations with the Computer: Activities with Numbers, Words, and Lists

HELfEki HIMT

MAKE can also be used to change the value of a variable. Try this:

MAKE "NUMBER 5
PRINT :NUMBER
MAKE "NUMBER iNUMBER + 5
PRINT iNUMBER

The command MAKE "NUMBER :NUMBER + 5 tells the computer to
add 5 to the value :NUMBER and give this new value the name "NUMBER.

MAKE can also be used to change the value of a list or word variable.
Type these commands:

MAKE "MESSAGE [HELLO THERE]
PRINT :MESSAGE

MAKE "MESSAGE SENTENCE :MESSAGE "FRIEND
PRINT :MESSAGE

Let’s examine the workings of the command

MAKE ’'MESSAGE SENTENCE iMESSAGE "FRIEND

First of all, remember that if you give the command MAKE "MESSAGE [HELLO THERE],
MAKE will create a variable named "MESSAGE with a value, [HELLO THERE] and Logo will
store that variable in the computer’s working memory.

Figure 9.3a

Conversations with the Computer: Activities with Numbers, Words, and Lists / 189

If you tell Logo to PRINT :MESSAGE, Logo finds the value in the slot marked
"MESSAGE, and passes that value, [HELLO THERE], to PRINT.

Figure 9.3b

Now look at the more complex command,

MAKE "MESSAGE SENTENCE :MESSAGE "FRIEND

MAKE still needs two inputs, a name and a value. The first input, the name is
"MESSAGE. For its second input, Logo tells MAKE to call SENTENCE, and to give
.qPNTENCE the inputs, .MESSAGE and "FRIEND.

Figure 9.3c

MAKE calls SENTENCE and gives it two inputs. The first is the present value stored m
the slot called "MESSAGE, which is still the list, [HELLO THERE]. The second is the word

"FRIEND.

Figure 9.3d

190 / Conversations with the Computer: Activities with Numbers, Words, and Lists

SENTENCE combines its two inputs and outputs [HELLO THERE FRIEND] back to
MAKE, which uses that list as its second input.

Figure 9.3e

Now MAKE creates a new variable with the name "MESSAGE and the value [HELLO
THERE FRIEND]. Logo stores this value in the computer’s working memory, replacing the
old value, which is eliminated.

Figure 9.3f

Now if you tell the computer to PRINT :MESSAGE, Logo gives PRINT the new value.

Figure 9.3g

Conversations with the Computer: Activities with Numbers, Words, and Lists / 191

Section 9.4.
Questions and Answers

Here’s an example in a procedure:

TO GROW :MESSAGE
PRINT [TYPE SOMETHING NEW]
MAKE "NEWPART READLIST
MAKE "MESSAGE SENTENCE iMESSAGE :NEWPART

PRINT [THE MESSAGE IS NOW]
PRINT -.MESSAGE
GROW iMESSAGE

END

See what happens when you type GROW "HELLO and follow the com¬

puter’s directions.

GROW "HELLO

Here’s how GROW works—the first line of GROW just prints TYPE
SOMETHING NEW. The second line tells the computer to give the name

"NEWPART to whatever the user types.
The third line creates a sentence of :MESSAGE and .NEWPART and

gives the whole thing the name "MESSAGE.
The fourth line prints THE MESSAGE IS NOW. The fifth line prints the

new value, :MESSAGE. The sixth line calls another GROW procedure, us¬
ing the new message as input, and the whole process starts again.

The ideas in this chapter can be used to make simple quiz programs.

Here’s what a simple Logo quiz might look like:

QUIZ1
WHAT IS THE NAME OF THIS BOOK?

LOGO
NO, NOT QUITE. PLEASE TRY AGAIN...
WHAT IS THE NAME OF THIS BOOK?

LOGO LEARNING
NO, NOT QUITE. PLEASE TRY AGAIN...
WHAT IS THE NAME OF THIS BOOK?
LEARNING WITH APPLE LOGO

YOU GOT IT!

If the user types “Learning With Apple Logo,’’ the procedure prints
“You got it!” and stops. Any other answer makes the computer print “No,
not quite. Please try again. . .” and start the whole process over again. This

is the procedure, QUIZ1:

TO QUIZ1
PRINT [WHAT IS THE NAME OF THIS BOOK?]
MAKE "ANSWER1 READLIST
IF :ANSWER1 = [LEARNING WITH APPLE LOGO] [PRINT [YOU GO IT!]

STOP]
PRINT [NO, NOT QUITE. PLEASE TRY AGAIN. . .]

QUIZ1
END

192 / Conversations with the Computer: Activities with Numbers, Words, and Lists

Sometimes a Logo command line is too long for a single line in this

book. The { symbol is used to remind you to type it as a single line, without

pressing RETURN until the end.

In QUIZ1, the conditional command is more complicated than the ones

we had earlier. IF has two inputs, a condition and an action list. The condi¬

tion is :ANSWER1 = [LEARNING WITH APPLE LOGO]. The action list is
[PRINT [YOU GOT IT!] STOP].

The only way to stop QUIZ1 without typing a correct answer is to press
CTRL-G.

I’ll show you two more examples, then you can make up some quizzes

of your own.

TO QUIZ2

PRINT [WHAT IS THE SHORT FORM OF FORWARD?]

MAKE "ANSWER2 READLIST

IF :ANSWER2 = [FD] [PRINT [CORRECT!] STOP]

PRINT [NO, THAT’S NOT IT.]

PRINT [WOULD YOU LIKE TO TRY AGAIN?]

MAKE 'TRY READLIST

IF TRY = [NO] [PRINT [THE ANSWER IS: FD] STOP]

IF :TRY = [YES] [OUIZ2 STOP]

PRINT [I QUIT! YOU DIDN’T ANSWER YES OR NO.]

END

QUIZ2 has an improvement over QUIZ1. It lets the user decide whether

to keep trying. If the user types anything other than YES or NO, the proce¬

dure complains and quits, without giving the answer.

QUIZ3 has one more improvement. Sometimes a question has more

than one correct answer (or an answer that’s almost correct). Every possi¬

ble correct answer should be included in a quiz procedure. One way to do

this is with the Logo command OR. OR outputs "TRUE if any of its inputs

are true. (Another Logo command, AND, outputs 'TRUE only if all of its in¬

puts are true.)

TO QUIZ3

PRINT [HOW MANY INPUTS DOES THE]

PRINT [MAKE COMMAND NEED?]

MAKE "ANS3 READLIST

IF OR :ANS3 = [TWO] :ANS3 = [2] [PRINT [RIGHT.] STOP]

PRINT [NO, MAKE NEEDS TWO INPUTS,]

PRINT [A NAME AND A VALUE]

END

QUIZ3 allows two possible correct answers but it does not make the

user try again. So you can see there are many possible variations.

Conversations with the Computer: Activities with Numbers, Words, and Lists / 193

EKntftKrm

Make up several quiz procedures of your own. You can combine them

into one big quiz program if you like.

TO LOGOQUIZ

QUIZ1

QUIZ2

QUIZ3

QUIZ4

QU1Z5

END

There are a lot of things to think about when you’re making up a quiz.

How should the information be printed on the screen? Should the questions

and answers be serious or funny? Should the responses to wrong answers

be helpful? Should the computer give clues? How many wrong answers

should be allowed before the correct answer is given? Should the computer

keep track of how many answers were right and wrong? If you want to

make an “intelligent” quiz procedure that accounts for a lot of different

choices and possibilities, you may wind up with a very complicated pro-

gram.

Section 9.5. GUESSNUMBER is a number guessing game. This example shows how

GUESSNUMBER 't is played.

GUESSNUMBER

I AM THINKING OF A NUMBER BETWEEN 0
AND 100. SEE IF YOU CAN GUESS IT.

> 50

TOO LOW
> 75

TOO LOW
> 85

TOO HIGH
> 80

TOO LOW
> 82

TOO HIGH
> 81

GOT IT!

194 / Conversations with the Computer: Activities with Numbers, Words, and Lists

You can play GUESSNUMBER by reading a file called

"GUESSNUMBER from your LWAL Procedures Disk or by typing in the

procedures given here. If you are going to type in the procedures, you will

need a tool procedure called READNUMBER, found on the LWAL Proce¬

dures Disk. Just insert the LWAL Procedures Disk into the disk drive and

type LOAD "READNUMBER. If you don’t yet have a complete LWAL Pro¬

cedures Disk, you can copy READNUMBER from the listing in Appendix 1.

GUESSNUMBER is something like the quiz procedures of the last sec¬

tion except that the computer keeps giving clues until the player guesses

correctly. The clues only say whether the guess was too high or too low.

Let’s examine what the computer has to do to play this game.

1. Print some instructions.

2. Choose a secret number between 0 and 100.

3. Wait for the user to type a guess.

4. Check the guess to see if it is too high, too low, or just right. If it is just

right, end the game. If it is too high or too low, print a message and ask
for another guess.

Each of these actions is carried out by a separate procedure.

TO GUESSNUMBER

INSTRUCTIONS

CHOOSENUMBER

GETGUESS

END

TO INSTRUCTIONS

CLEARTEXT

PRINT [I AM THINKING OR A NUMBER BETWEEN 0]

PRINT [AND 100. SEE IF YOU CAN GUESS IT.]

END

TO CHOOSENUMBER

MAKE "NUMBER 1 + RANDOM 99

END

TO GETGUESS

TYPE ">

MAKE "GUESS READNUMBER

CHECKGUESS :GUESS :NUMBER

END

TO CHECKGUESS :GUESS :NUMBER

IF :GUESS = :NUMBER [PRINT [GOT IT] STOP]

IF :GUESS > :NUMBER [PRINT [TOO HIGH] GETGUESS STOP]

IF :GUESS < :NUMBER [PRINT [TOO LOW] GETGUESS STOP]

END

Conversations with the Computer: Activities with Numbers, Words, and Lists / 195

A diagram that shows the order in which each procedure calls its sub¬

procedures is called a procedure tree. GUESSNUMBER calls

INSTRUCTIONS, CHOOSENUMBER, and GETGUESS. GETGUESS calls

CHECKGUESS. CHECKGUESS calls another GETGUESS. Then

CHECKGUESS and GETGUESS keep calling copies of each other until the

number is guessed.

GUESSNUMBER

I H I
INSTRUCTIONS CHOOSENUMBER GETGUESS

CHECKGUESS
I

GETGUESS
I

CHECKGUESS
I

GETGUESS
I

The lower branches of the tree keep repeating until the number is

guessed by the user. A procedure tree is an important tool for understand¬

ing how a set of procedures interrelates.
GUESSNUMBER and its subprocedures use three Logo commands that

we’ve never seen before, CLEARTEXT, RANDOM and TYPE, and the tool

procedure READNUMBER.
CLEARTEXT clears the text screen and puts the cursor at the top.

RANDOM takes a number as an input and outputs a number between

zero and one less than the input number. It outputs a different number each

time it is called. RANDOM 5 outputs a number between 0 and 4. RANDOM

99 outputs a number between 0 and 98, etc.

TYPE prints a word or list without moving the cursor down to the next

line.
READNUMBER waits for a user to type a number and then outputs the

number. READNUMBER is just like READLIST except that it outputs a num¬

ber and READLIST outputs a list. If you want an explanation of how it

works, see Chapter 14, “How the Special Tool Procedures Work.” Mean¬

while, you can use it just as though it were a Logo command without un¬

derstanding how it works. It can be used in many different projects.

Now let’s look at how the procedures work.

TO GUESSNUMBER

INSTRUCTIONS

CHOOSENUMBER

GETGUESS

END

GUESSNUMBER is a superprocedure. All it does is call three subpro¬

cedures, one after another.

TO INSTRUCTIONS

CLEARTEXT

PRINT [I AM THINKING OF A NUMBER BETWEEN 0]

PRINT [AND 100. SEE IF YOU CAN GUESS IT.]

END

196 / Conversations with the Computer: Activities with Numbers, Words, and Lists

The first line of INSTRUCTIONS clears the screen. The next two lines

print the instructions for the game.

TO CHOOSENUMBER

MAKE "NUMBER 1 + RANDOM 99

END

CHOOSENUMBER creates a new variable called "NUMBER with a ran¬

dom value between 1 and 99. It does this by adding 1 to the output of

RANDOM 99 (which has a value between 0 and 98).

TO GETGUESS

TYPE ">

MAKE "GUESS READNUMBER

CHECKGUESS :GUESS :NUMBER

END

GETGUESS calls two subprocedures, READNUMBER and

CHECKGUESS. The first line of GETGUESS prints the > symbol. The sec¬

ond line prints the symbol > on the screen. The third gives the name

"GUESS to whatever number the user types. READNUMBER gets that num¬

ber from the user. The third line calls CHECKGUESS, which takes two in¬

puts. The first, :GUESS, is the number just typed in by the user. The sec¬

ond, :NUMBER, is the value of the computer’s secret number.

TO CHECKGUESS iGUESS :NUMBER

IF :GUESS = :NUMBER [PRINT [GOT IT] STOP]

IF :GUESS > :NUMBER [PRINT [TOO HIGH] GETGUESS STOP]

IF :GUESS < rNUMBER [PRINT [TOO LOW] GETGUESS STOP]

END

The first line of CHECKGUESS checks to see if the guess is correct. If

it is, GETGUESS stops and the game is over. The second line checks to see

if the guess is bigger than the secret number. If so, it prints TOO HIGH and

calls GETGUESS to get another guess from the user. If the guess is smaller

than the secret number, the third line prints TOO LOW and calls

GETGUESS to get another guess.

GETGUESS gets another guess and calls CHECKGUESS again with a

new value for :GUESS. CHECKGUESS compares this new guess with the

secret number. CHECKGUESS and GETGUESS keep calling copies of each

other until the secret number is guessed. If the user is a lucky or clever

guesser, the game may be over quickly. If not, it could go on for a long
time.

Conversations with the Computer: Activities with Numbers, Words, and Lists / 197

txnmam

See if you can improve GUESSNUMBER so that it counts the number

of guesses you need. To do this, you would need another variable called

"COUNT. GETGUESS should increase the value of "COUNT by one every

time it is called and print the value every turn, telling you how many turns

you’ve used. Here’s what a sample game might look like.

GUESSNUMBER2

I AM THINKING OF A NUMBER BETWEEN 0
AND 100. SEE IF YOU CAN GUESS IT.

1 > 50

TOO HIGH
2 > 25

TOO LOW
3 > 35

TOO HIGH
4 > 30

TOO HIGH
5 > 28

GOT IT!

You can do this by adding three lines to your procedures: a line in

GUESSNUMBER to start counting at zero.

MAKE "COUNT 0

and two lines in GETGUESS,

MAKE "COUNT :COUNT + 1

TYPE WORD :COUNT. ">

WORD :COUNT "> combines the value of the count with the > sym¬

bol.
Try to make a set of procedures that works like the example.

Section 9.6. Logo’s arithmetical capabilities may also be used to create a simple

MATHQUIZ math quiz. This one lets you practice addition of two-digit numbers. You

can figure out yourself how to extend it to any other kind of arithmetic you

want to practice.
To try the quiz, read the program from a file called "MATHQUIZ on the

LWAL Procedures Disk, or copy the procedures listed in this section. If

you copy the procedures you will also need to copy a tool procedure

READNUMBER from Appendix I.

Here’s an example of how the program works.

MATHQUIZ

HOW MANY PROBLEMS WOULD YOU LIKE?

2
PROBLEM 1
35 -H 41 = 76
CORRECT
PLEASE TYPE RETURN
PROBLEM 2
78 -I- 43 = 111

SORRY, THE ANSWER IS 121

198 / Conversations with the Computer; Activities with Numbers, Words, and Lists

PLEASE TYPE RETURN
YOUR SCORE IS 1
OUT OF 2 PROBLEMS

Let’s see what the procedure has to do.

1. Find out how many problems you want to do.

2. Choose two numbers and present the first problem.

3. Check the answer you type—if it is correct, print “correct” and in¬

crease your score by one.

4. Check to see if you have completed the number of problems you want¬

ed. If so, print your score and stop. If not, increase the count by one,

choose two more numbers, and go on.

Here is a set of procedures that perform these tasks:

TO MATHQUIZ

CLEARTEXT

GETTOTAL

MAKE "COUNT1

MAKE "SCORE 0

ADDQUIZ :COUNT :TOTAL :SCORE

END

TO GETTOTAL

PRINT [HOW MANY PROBLEMS DO YOU WANT?]

MAKE 'TOTAL READNUMBER

END

TO ADDQUIZ :COUNT :TOTAL :SCORE

CLEARTEXT

GETNUMBERS

GIVEPROBLEM

GETANSWER

WAITFORUSER

IF :COUNT = :TOTAL [FINISH STOP]

ADDQUIZ (:COUNT + 1) :TOTAL :SCORE

END

TO GETNUMBERS

MAKE "NUMBER1 RANDOM 100

MAKE "NUMBER2 RANDOM 100

MAKE "RIGHTANSWER :NUMBER1 + :NUMBER2

END

TO GIVEPROBLEM

PRINT SENTENCE [PROBLEM] :COUNT

PRINT []

TYPE (SENTENCE :NUMBER1 [+] :NUMBER2 [=])

END

TO GETANSWER

MAKE "RESPONSE READNUMBER

TEST :RESPONSE = :RIGHTANSWER

IFTRUE [PRINT [CORRECT]]

IFTRUE [MAKE "SCORE :SCORE + 1]

Conversations with the Computer: Activities with Numbers, Words, and Lists / 199

IFFALSE [PRINT SENTENCE [SORRY, THE ANSWER IS]

:RIGHTANSWER]

END

TO WAITFORUSER

PRINT [PLEASE TYPE RETURN]

PRINT READLIST

END

TO FINISH

CLEARTEXT

PRINT SENTENCE [YOUR SCORE IS] :SCORE

PRINT (SENTENCE [OUT OF] :TOTAL [PROBLEMS])

END

This procedure tree shows the order in which each procedure and sub¬

procedure is called.

MATHQUIZ

1 rr-

Now let’s examine each procedure

TO MATHOUIZ

CLEARTEXT

GETTOTAL

MAKE "COUNT 1

MAKE "SCORE 0

ADDQUIZ :COUNT TOTAL iSCORE

END

TO GETTOTAL

PRINT [HOW MANY PROBLEMS DO YOU WANT?]

MAKE "TOTAL READNUMBER

END

MATHQUIZ clears the text screen, calls GETTOTAL to ask the user

how many problems to give, and sets the value of'TOTAL. MATHQUIZ

then sets the starting value of "COUNT to 1 and "SCORE to 0 and calls

ADDQUIZ.

200 / Conversations with the Computer: Activities with Numbers, Words, and Lists

TO ADDQUIZ iCOUNT TOTAL :SCORE

CLEARTEXT

GETNUMBERS

GIVEPROBLEM

GETANSWER

WAITFORUSER

IF :COUNT = TOTAL [FINISH STOP]

ADDQUIZ (:COUNT + 1) TOTAL :SCORE

END

ADDQUIZ starts with three inputs. The value of :COUNT is 1 for the

first problem, the value of TOTAL is the number of problems the user

asked for, and the value of ;SCORE is 0. ADDQUIZ clears the text screen

and calls GETNUMBERS.

TO GETNUMBERS

MAKE "NUMBER1 RANDOM 100

MAKE "NUMBER2 RANDOM 100

MAKE "RIGHTANSWER :NUMBER1 + ;NUMBER2

END

GETNUMBERS chooses the numbers for the problem, finds the correct

answer, and gives it the name "RIGHTANSWER. ADDQUIZ then calls

GIVEPROBLEM.

TO GIVEPROBLEM

PRINT SENTENCE [PROBLEM] :COUNT

PRINT []

TYPE (SENTENCE :NUMBER1 [+] ;NUMBER2 [=])

END

GIVEPROBLEM just prints the problem. ADDQUIZ then calls

GETANSWER.

TO GETANSWER

MAKE "RESPONSE READNUMBER

TEST :RESPONSE = iRIGHTANSWER

IFTRUE [PRINT [CORRECT]]

IFTRUE [MAKE "SCORE :SCORE +1]

IFFALSE [PRINT SENTENCE [SORRY, THE ANSWER IS]

:RIGHTANSWER]

END

GETANSWER gets an answer from the user and uses the Logo com¬

mands TEST, IFTRUE, and IFFALSE to see whether that answer is correct.

If it is correct, the score is increased by one.

TEST, IFTRUE, and IFFALSE are similar to the Logo command IF.

TEST has one input, a condition which must be either true or false. The ac¬

tion list that follows IFTRUE will be carried out if the condition tested was

true; the action list following IFFALSE will be carried out if fhe condition

was false.

Conversations with the Computer: Activities with Numbers, Words, and Lists / 201

I

I

I

ADDQUIZ then calls WAITFORUSER:

TO WAITFORUSER

PRINT [PLEASE PRESS RETURN]

PRINT READLIST

END

WAITFORUSER is a clever trick that allows the user to decide how

long to wait before going on to the next problem. READLIST waits for the

user to type something, anything. The only purpose of the PRINT command

is to give Logo something to do with what the user types. (If the user fol¬

lows instructions, he or she will just press the RETURN key and READLIST

will then output an empty list, [].) WAITFORUSER can be used as a tool in

other conversational programs to allow the user to decide when to go on.

The next to last line of ADDQUIZ checks to see if the count is equal to

the total number of problems asked for. If it is, the subprocedure FINISH is

called to print the score and ADDQUIZ stops.

TO FINISH

CLEARTEXT

PRINT SENTENCE [YOUR SCORE IS] :SCORE

PRINT (SENTENCE [OUT OF] TOTAL [PROBLEMS])

END

If the count is not equal to the total, the last line of ADDQUIZ calls an¬

other ADDQUIZ with :COUNT increased by 1, with the same value of

TOTAL, and a new value for :SCORE (if the user gave the correct answer

to the problem).

exnmim

Listed below are some of the many ways you might want to modify this

type of program.

• Allow the user to decide how large the numbers in the problem will be.

This is done by using a number typed by the user (in place of 100) as

an input to RANDOM in GETNUMBERS.

• Print the numbers in a dilferent format. For example:

PROBLEM 1
17
-I-

28

One way to do this is to make blank space using \ (CTRL-Q). Try this:

PRINT SENTENCE "W 25

(The spaces after each \ mark are printed just as they appear.)

• If you want to get really fancy, make a set of numbers and symbols for

the turtle to draw and “print” the problems and answers on the turtle’s

screen. This, in itself, would be quite an elaborate turtle geometry pro¬

ject.

I

f

I i
i
i

i j

[

f
i
I
!

J

202 / Conversations with the Computer: Activities with Numbers, Words, and Lists

mLni& HiMT

• Make problems get harder when the user gets a correct answer. This

can be done by increasing the value of the largest possible number

whenever an answer is correct.

• Change the messages that are printed as the quiz goes along. Make the

computer print different messages each time.

• Offer helpful suggestions if wrong answers are typed. This is one of the

hardest things to do because first you have to decide what kind of sug¬

gestions would be helpful.

• Make new quizzes for subtraction, multiplication, and division. Then

make a superprocedure which lets the user choose which kind of match

to practice.

Writing computer programs with which a user may interact in a way that is both friendly
and helpful is one of the most difficult challenges for any programmer. Most so-called
computer-assisted instruction (CAI) is very poorly thought out and often a waste of time for
anyone who has to use it. On the other hand, attempting to write a CAI program can be a
powerful learning experience for two reasons. First, it forces a programmer to think carefully
about how a computer and a person should interact to help someone learn. Second, many of
the programming ideas involved in such a project will be useful for many other programs, as
we will see as we go through the book.

An interesting project for a group of students might be to have each one write a CAI drill
program of some kind. Then let people try out each others’ programs and evaluate them as a
group, both as programs and as educational experiences.

I

i

]

204 / SHOOT: An Interactive Turtle Game

CHAPTER 10

Command
Short
Form Examples With Inputs

SETPOS SETPOS [100 30], SETPOS [10 -20]
SETX SETX 50, SETX -100
SETY SETY 35, SETY -20
SETHEADING SETH SETHEADING 90, SETH 30
WAIT WAIT 100
PENREVERSE PX
TOWARDS SETHEADING TOWARDS [0 0]

LWAL Procedures Disk files used: "SHOOT, "DISTANCE, "CCIRCLE,
"READNUMBER, "WAIT

New tool procedures used:

Tool Procedure Examples

DISTANCE PRINT DISTANCE [0 100]
IF (DISTANCE PSTART < 10) [ENDGAME]
CCIRCLE 50 CCIRCLE

SHOOT: An Interactive Turtle Game / 205

10 SHOOT: An Interactive Turtle
Game

The SHOOT game was introduced as an activity in Chapter 3. The ob¬

ject of the game is to aim the turtle at a target on the screen and then

“shoot” the turtle at the target. It is designed to help people learn how to

control the turtle—particularly how to estimate angles and distances with

the turtle. Before reading this chapter you should look back at Chapter 3 to

remind yourself how the game is played.

In this chapter you’ll learn how the SHOOT procedures work and how

to improve them to make the game more interesting. This is the first of four

chapters that deal with interactive programming projects. An interactive

program is one in which there is communication between the computer and

a person using the computer. What the computer does depends on what the

user does, and vice versa. You had a taste of interactive programming in

Chapter 9 with the quiz and number-guessing games. This chapter uses

ideas from Chapter 9 along with ideas from earlier chapters to make an in¬

teractive turtle game.
This chapter and the next three chapters start with a partially complet¬

ed project that really works. I’ll explain how the procedures work and show

you how to change them to make the projects more interesting. I’ll also use

the projects in these four chapters to explain more about how Logo works

and how to think about designing your own projects. By the time you finish

Chapter 13, you should have a lot of project ideas of your own and know

enough about Logo programming to make them happen.

The procedures for each project, as well as the tools needed to make

them work, are stored on the LWAL Procedures Disk. If you don t have a

complete LWAL Procedures Disk you can copy the procedures from

Appendix 1.

mnf& Hurr

My experience in teaching Logo has shown me that people learn as much from adapting
and modifying someone else’s work as they do from creating their own projects entirely from
scratch. In fact, a great deal of “real world” programming activity involves starting with
someone else’s idea for a program and adapting it for a different use or improving it in some

way.
SHOOT is an example of a typical computer programming project—a computer game.

Programming a computer so that it interacts with a user and takes on a kind of personality
seems to be one of the chief attractions of computer programming for many learners. Most
people who continue programming beyond the beginning stages want to make the computer
play a game, ask questions and check answers, or engage in some kind of conversation with a

user.
This kind of activity involves data processing—creating, keeping track of, and

manipulating information with a computer. In addition to learning how to design and modify
Logo projects, this chapter and the ones that follow will help a reader understand something
about what data processing is, how it happens, and why it’s important.

206 / SHOOT: An Interactive Turtle Game

Section 10.1.
New Logo Commands
and Tool Procedures
Used in the SHOOT Game

As I suggested in a helper’s hint in Chapter 3, SHOOT provides an excellent opportunity
for a collaboration between older and younger learners. An older, more experienced
programmer anywhere from age ten to adult could work with a younger learner, from age five
or six on up. They could work together as a team to modify the game so that it is more
interesting to both of them.

In a school or computer club, this could be an exciting joint project for a class of sixth or
seventh graders working with a class of second or third graders. With a lot of people working
together on the same type of project, there would be many opportunities for sharing and
borrowing ideas. I wouldn’t think of this as a competition to see who could design the best

SHOOT game, but rather as a collaboration to see how many different and exciting variations
could be developed by a group all starting from the same point and sharing ideas and
techniques with each other.

Everything we’ve done with the turtle so far in this book has used tur¬

tle commands like FORWARD, BACK, RIGHT, and LEFT. These commands

move the turtle from wherever it is to a new position. Logo can also use

turtle commands that move the turtle to an exact position on the screen us¬

ing X and Y coordinates. X and Y coordinates are measured from the cen¬

ter of the screen, as shown in Figure 10.1.

V.

- N

X ^

L

Figure 10.1: The X and Y coordinates of a point tell its horizontal and vertical distance
from the center of the screen.

X and Y coordinates are used in the SHOOT game to set the locations

of the target and of the turtle’s starting position. The turtle can be moved

directly to any point on the screen using the command SETPOS with a list

of two numbers as input. The first number gives the X (horizontal) position,

and the second input gives the turtle a Y (vertical) position. Positive values

of X move the turtle to the right half of the screen; negative values move it

to the left half. Positive values of Y move the turtle to the upper half of the

screen, negative values to the lower half. Try these examples:

CLEARSCREEN

SETPOS [20 30]

SETPOS [-50 75]

SETPOS [-100 -20]

SETPOS [45 -80]

SHOOT; An Interactive Turtle Game / 207

Figure 10.2: SETPOS moves the turtle directly to a fixed point without changing its

heading.

mFAU

When you give a command a negative input like -50, be sure there’s

no space between the - and the 50. Otherwise Logo may think you are try¬

ing to subtract.

As you can see from Figure 10.2, SETPOS moves the turtle without

changing its heading. You can change the turtle’s heading with the com¬

mand SETHEADING (abbreviated SETH). Try this:

SETHEADING 45

SETHEADING 300

SETHEADING 400

SETHEADING 1000

<? V <7 <3

Figure 10.3: Changing the turtle’s heading with SETHEADING.

If you give SETHEADING an input larger than 360, it will subtract 360

from that value. Thus, SETHEADING 400 has the same effect as

SETHEADING 40 (400 - 360) and SETHEADING 1000 has the same effect

as SETHEADING 280 (1000 - 360 - 360).

208 / SHOOT: An Interactive Turtle Game

Two other commands, SETX and SETY, each take only one input and

change the turtle’s X or Y position without affecting the other.

WAIT is a Logo command that makes the computer pause for a while.

It needs one input, a number that tells the computer how long to wait. An

input of 100 will make the computer wait for about two seconds. Try these

examples to see what happens:

WAIT 100

WAIT 200

WAIT 1000

The SHOOT procedures also use the tool procedures DISTANCE,

CCIRCLE, and READNUMBER; these can be loaded from files on your

LWAL Procedures Disk or copied from Appendix I.

DISTANCE needs a list as its input, the X- and Y-coordinates of a

point. It outputs a message giving the distance between the turtle and the

point. It is used in the SHOOT game to tell how far the turtle is from the

center of the target. To try these examples, first load the file "DISTANCE

from the LWAL Procedures Disk or copy it from Appendix 1. Then type

CLEARSCREEN

PRINT DISTANCE [100 0]

IF (DISTANCE [100 0] < 10) [PRINT [YOU GOT IT!]]

IF (DISTANCE [5 5] < 10) [PRINT [YOU GOT IT!]]

In the first example, the computer prints the distance between the tur¬

tle’s current position and the point X = 100, Y = 0. In the second and third

examples, it checks to see if the turtle is less than 10 units from a point

(which might be the center of a target), and if that’s true, it prints a message

saying you’ve hit the target.

CCIRCLE takes one input, the radius of a circle, and draws a circle

whose center is the turtle’s starting point. To try CCIRCLE, load "CCIRCLE

from the LWAL Procedures Disk or copy it from Appendix 1.

CCIRCLE 50

Figure 10.4: CCIRCLE draws a circle with the turtle at its center.

SHOOT: An Interactive Turtle Game / 209

Section 10.2.
How the SHOOT Game
Works

The START Superprocedure

CCIRCLE is used in the SHOOT game with SETPOS to move the turtle

to a particular point and draw a circle whose center is at that point. The

same point is later used as input to DISTANCE to check whether the turtle

has hit the target.
READNUMBER, which was also used in Chapter 9, is like the Logo

command READLIST. It waits for the user to type a number at the key¬

board and outputs that number as a message. (READLIST also waits for the

user to type something, but it outputs a list as a message rather than a num¬

ber.)
To try READNUMBER, load the "READNUMBER file from the LWAL

Procedures Disk or copy it from Appendix I. Then try this example:

PRINT READNUMBER + 55

When you type this command, the computer will wait for you to type a

number followed by RETURN. It will then add 55 to the number you typed

and print the result. If you type something that is not a number, Logo will

complain.
Now that you understand SETPOS, SETHEADING, WAIT, DISTANCE,

CCIRCLE, and READNUMBER, you are ready to understand how the

SHOOT game procedures work. A few additional commands and tool pro¬

cedures that are less important than these will be explained as you go along.

The SHOOT game program is made up of seven different procedures.

Two of them, START and SHOOT, are superprocedures, that is, commands

that you type to make things happen. The subprocedures are called

STARTDATA, STARTGAME, DRAWTARGET, STARTTURTLE, HIT, and

MISS. The project also uses three tool procedures: DISTANCE, CCIRCLE,

and READNUMBER, which were described in the last section.

At this point you can either load the SHOOT procedures from the file

called "SHOOT on your LWAL Procedures Disk or type them in as you

read this chapter. If you are typing the procedures yourself you will have to

load the tool procedures from their files on your LWAL Procedures Disk or

copy them from Appendix 1.

We’ll begin by looking at the first superprocedure, START, and its

subprocedures, STARTDATA, STARTGAME, DRAWTARGET, and

STARTTURTLE. This procedure tree shows how the procedures are orga¬

nized:

START
I-1-1

STARTDATA STARTGAME
I I

DRAWTARGET STARTTURTLE

210 / SHOOT: An Interactive Turtle Game

START commands two subprocedures, STARTDATA and

STARTGAME. STARTGAME also commands two subprocedures,

DRAWTARGET and STARTTURTLE. Here’s how they all fit together:

TO START

STARTDATA

STARTGAME

END

START calls STARTDATA to set up the starting conditions for the

game and then calls STARTGAME to draw the target and place the turtle in

its starting position.

TO STARTDATA

MAKE "SHOTNUMBER 0

MAKE "XTARGET (90 - 10 * RANDOM 19)

MAKE "YTARGET (80 - 10 * RANDOM 6)

MAKE "XSTART (90 - 10 * RANDOM 19)

MAKE "YSTART (-10 * RANDOM 3)

MAKE "HSTART (10 * RANDOM 36)

MAKE "PTARGET SENTENCE :XTARGET :YTARGET

MAKE "PSTART SENTENCE :XSTART :YSTART

END

STARTDATA gives names to all the variables that store the information

(data) that will be needed by the computer during the game. It uses the

MAKE command to assign the proper value to each name. For example,

MAKE "SHOTNUMBER 0

creates a variable named "SHOTNUMBER with starting value of 0.

The next five lines use the Logo command RANDOM to create values

for the target location and the starting location and heading of the turtle.

The use of RANDOM assures that each time the game is played, the loca¬

tions will be different. "XTARGET and "YTARGET are the names of the X

and Y coordinates of the center of the target. Every time the game is

played, the X coordinate of the target will be somewhere between —90 and

90 and the Y coordinate will be between 30 and 80.

"XSTART, "YSTART, and "HSTART are the names of the X and Y co¬

ordinates of the turtle’s starting position and its starting heading. That posi¬

tion will always be somewhere between -90 and 90 in the X direction and

between -20 and 0 in the Y direction. The starting heading will be between

0 and 350 degrees. The last two commands make the target and starting po¬

sitions into lists.

SHOOT: An Interactive Turtle Game / 211

The SHOOT
Superprocedure

TO STARTGAME

CLEARSCREEN

SETBG 6

HIDETURTLE

DRAWTARGET :PTARGET

STARTTURTLE :PSTART iHSTART

SHOWTURTLE

END

STARTGAME uses DRAWTARGET and STARTTURTLE to draw the

target and start the turtle in the position chosen by STARTDATA. The

SETBG 6 command in the second line makes the turtle draw the thinnest

possible lines so that its actions are as clear as possible for playing the

game.

TO DRAWTARGET PTARGET

PENUP

SETPOS PTARGET

CCIRCLE 10

END

DRAWTARGET uses SETPOS and the tool procedure CCIRCLE to

draw a circular target at the position chosen by STARTDATA.

TO STARTTURTLE PSTART :HSTART

PENUP

SETPOS PSTART

SETHEADING PSTART

END

STARTTURTLE uses SETPOS and SETHEADING to set the turtle at

the starting position chosen by STARTDATA.

The second superprocedure, SHOOT, is used after a player has aimed

the turtle toward the target and is ready to try a shot. This procedure tree

shows the organization of SHOOT and its three subprocedures. The tool

procedures (DISTANCE and READNUMBER) are not shown in the proce¬

dure tree.

SHOOT

I-I
HIT Mip

STARTTURTLE

The superprocedure SHOOT is the most important one used in the en¬

tire game. Let’s study it step-by-step.

212 / SHOOT: An Interactive Turtle Game

TO SHOOT
MAKE "SHOTNUMBER iSHOTNUMBER + 1
PRINT [HOW FAR?]
MAKE "SHOT READNUMBER
PENDOWN FORWARD :SHOT
TEST DISTANCE PTARGET < 10
IFTRUE [HIT]
IFFALSE [MISS]
END

In the line

MAKE "SHOTNUMBER :SHOTNUMBER + 1

the variable "SHOTNUMBER, is used to keep track of how many shots you
have taken. Every time you type SHOOT, the value of "SHOTNUMBER is
increased by one. The Logo command MAKE has two inputs. The first in¬
put, "SHOTNUMBER, creates a name. The second, iSHOTNUMBER + 1,
gives that name a value. In this case, the computer makes the name
"SHOTNUMBER stand for the old value, :SHOTNUMBER, plus one. This
idea is used in many computer programs. It is called incrementing the value

o/"SHOTNUMBER or updating "SHOTNUMBER.
Next, the line

PRINT [HOW FAR?]

asks the player to type a number. Then,

MAKE "SHOT READNUMBER

gives the name "SHOT to whatever number the player types.
The fourth line

PENDOWN FORWARD :SHOT

moves the turtle forward the amount of the shot and draws a line on the TV
screen.

TEST (DISTANCE PTARGET) < 10

tests whether the distance to the center of the target is less than 10 turtle
steps. The TEST command makes the computer temporarily store the re¬
sult, true or false. The parentheses around DISTANCE and its input make
the line easier to read. They are not needed by Logo.

The sixth line

IFTRUE [HIT]

calls the HIT procedure to declare a “hit” if the result of the test was true.

Finally,

IFFALSE [MISS]

SHOOT: An Interactive Turtle Game / 213

mLKfti HIMT

Section 10.3.
Ways to Improve the
SHOOT Game

calls the MISS procedure to declare a “miss” if the test was fa/se, wait a
little while, and then send the turtle back to where it started so that you can

try again.
The HIT and MISS procedures are quite simple.

TO HIT
PRINT [CONGRATULATIONS! YOU HIT THE TARGET!]
PRINT (SENTENCE [IT TOOK YOU ONLY] :SHOTNUMBER [SHOTS])

END

The parentheses in the second line of HIT are needed because
SENTENCE has more than two inputs.

TO MISS
PRINT SENTENCE [MISSED! SHOT NUMBER] :SHOTNUMBER

WAIT 200
STARTTURTLE iPSTART :HSTART
END

After telling you that you’ve missed your shot and how many shots
you’ve had, the computer waits a little while before using
STARTTURTLE—the same STARTTURTLE procedure that was used to
place the turtle in position at the beginning of the game—to return the turtle

to its starting point.

The SHOOT game procedures make use of global or public variables whose values can
be known and used by all procedures. This is in contrast to procedures that use local or
private variables, that is, variables that are defined in the title of a particular procedure.
Global variables are useful where the same variables are used by several procedures and
when changes in any of the variables need to be maintained for all the procedures that use
them.

When using global variable names it is critical to make sure that there is no duplication of
names anywhere throughout your entire system of procedures. With local variables this is not
necessary because the names are private for each procedure. Two procedures can use the
same names for different local variables without any problem. This is why many programmers
prefer to use local variables whenever possible.

Almost everyone who plays SHOOT has ideas for improving the game.
Unlike many other computer games you may have played, you can change
SHOOT very easily. Some of the ideas that people have suggested for im¬
proving the game are:

1. Make the game more interesting by having something wonderful hap¬
pen when the turtle hits the target.

2. Make the game harder to play. One way to do this would be to make
the target smaller. Another way would be to make the turtle move with
its pen up, so that you can’t see where your last shot went.

3. Make the game easier by making the target larger or by having the
computer give helpful hints after you miss a shot.

214 / SHOOT: An Interactive Turtle Game

Section 10.4.
Making the Game More
Interesting

4. Make the printed messages more interesting or amusing or make the

computer print a set of instructions for new players.

5. Make a SUPERSHOOT game that combines several of these ideas and

allows a player to choose whether the game will be hard, easy, or me¬

dium.

In the rest of this chapter, you’ll learn how to make these changes.

Learning how to change the SHOOT game will make it easier for you to

change any Logo game or activity.

One of the best ways to add interest to a game like SHOOT is to make

something interesting happen when the turtle hits the target. It could be

some kind of explosion, for example. Here’s one possibility:

TO EXPLODE :SIZE

HIDETURTLE

REPEAT 18 [FORWARD :SIZE BACK :SIZE RIGHT 20]

END

EXPLODE has a variable size input so that you can decide later how

big the explosion should be.

Figure 10.5: Adding an explosion to the SHOOT game might make it more fun.

The next thing to do is to decide where to put the EXPLODE procedure

into the SHOOT game. If you look at the SHOOT procedure in Section

10.2, you will see that one of its subprocedures is called HIT. HIT has the

job of printing the message telling that the turtle hit the target. You have a

choice about where to put EXPLODE. You can either add it to SHOOT in

the same line as HIT or add it directly to HIT. If you add it to the sixth line

of SHOOT, that line will become

IFTRUE [HIT EXPLODE 20]

If you add it to HIT, it can be placed before or after the print state¬

ments.

SHOOT: An Interactive Turtle Game / 215

eXHMUffM

Section 10.5.
Making the SHOOT
Game Harder

TO HIT
PRINT [CONGRATULATIONS! YOU HIT THE TARGET!]

PRINT (SENTENCE [IT TOOK YOU ONLY] iSHOTNUMBER [SHOTS])

EXPLODE 20

END

Both ways of adding EXPLODE to SHOOT will have the same effecf as

far as a player of the game is concerned. It’s up to you to decide which way

will make the procedures clearer to you (in case you ever want to change

them again or explain them to someone).

You can probably think of a lot of ways to make more interesting ex¬

plosions. Make them different colors or sizes. Make them change a little ev¬

ery time the game is played. Make them larger or smaller depending on how

many shots it took to hit the target. Or, you might have an entirely different

kind of effect. Make a “flag” appear on the target after a hit or have the

target itself disappear in some dramatic way.

Many people find the SHOOT game quite easy after a little practice.

Another way to make the game more interesting is to make it more chal¬

lenging.
One simple way to do this is to make the turtle move without drawing

lines. The lines make it easier for a player to tell whether to turn the turtle

more or less than the time before and whether to shoot it longer or shorter.

If the lines are not visible, a player will be forced to remember more about

what has already happened. The simplest way to do this is to remove the

PENDOWN command from the fourth line of the SHOOT procedure as giv¬

en in Section 10.2.
If you want to leave some kind of clue without showing the whole line,

you might have the turtle draw an “X” or make some other kind of mark

on the screen before it returns to its starting point.

Another way to give a more limited clue would be to have the turtle

draw the line as usual when the shot is made, but erase it when it returns to

the starting point. You can do this by having the turtle draw its lines using

PENREVERSE.
When you use PENREVERSE, the turtle will draw a line if there is not

a line already on the screen. If there is a line on the screen when the turtle

is set to PENREVERSE, the line will be erased as the turtle moves over it.

Try this:

DRAW

PENREVERSE

FORWARD 50

BACK 50

216 / SHOOT: An Interactive Turtle Game

You should see the turtle draw a line as it goes forward and erase it as

it goes backward. To use this effect, the command PENREVERSE should

be added to the fourth line of SHOOT, instead of PENDOWN.

PENREVERSE FORWARD :SHOT

There’s one other problem. The turtle’s pen cannot be up when it

draws with PENREVERSE. We have to change the MISS procedure to re¬

move the PENUP command as the turtle returns to its starting point. MISS

uses STARTTURTLE to move the turtle back to its original position.

TO MISS

PRINT SENTENCE [MISSED! SHOT NUMBER] :SHOTNUMBER

WAIT 200

STARTTURTLE :PSTART :HSTART

END

But STARTTURTLE includes a PENUP command.

TO STARTTURTLE PSTART :HSTART

PENUP

SETPOS PSTART

SETHEADING PSTART

END

To eliminate the PENUP, replace STARTTURTLE in MISS by a new

procedure called RESTART, which is the same as STARTTURTLE but with¬

out PENUP.

TO RESTART PSTART PSTART

SETPOS PSTART

SETHEADING PSTART

END

and

TO MISS

PRINT SENTENCE [MISSED! SHOT NUMBER] :SHOTNUMBER

WAIT 200

RESTART PSTART PSTART

END

To try out these changes, play the game to make sure it works proper¬

ly-
Another way to make the game harder is to make the target smaller. To

do this, change DRAWTARGET so that it draws a smaller circle.

TO DRAWTARGET PTARGET

PENUP

SETPOS PTARGET

CCIRCLE 5

END

SHOOT: An Interactive Turtle Game / 217

Originally, CCIRCLE had an input of 10. Remember that you also have

to change SHOOT so that when the computer checks the distance from the

turtle to the target, it will use the new target size. To do this you have to

change the fifth line of SHOOT.

TEST (DISTANCE TARGET) < 5

mrm

One of the most common sources of bugs in a computer program is

when someone makes a change in one part of the program and forgets to

change other parts of the program that are related to the part that was

changed. If you changed the size of the target without changing the TEST

line in SHOOT, the target would look smaller, but the computer would still

print a “hit” message if the turtle was within 10 units of the target—the

original distance.

pmm. IMA

If you are going to vary the size of the target a lot, you can solve this

problem in advance by making both the target size in DRAWTARGET and

the distance checked in SHOOT depend on a variable that could be set at

the beginning of the game by STARTDATA. If you did this, you would have

to change STARTDATA and STARTGAME as well as DRAWTARGET and

SHOOT.
Suppose you call the new variable "RTARGET (meaning “radius of the

target”). Then DRAWTARGET would need a new input.

TO DRAWTARGET PTARGET PTARGET

PENUP

SETPOS PTARGET

CCIRCLE PTARGET

END

and the DRAWTARGET line in STARTGAME would be changed to

DRAWTARGET PTARGET PTARGET

The fifth line of SHOOT would become

TEST DISTANCE PTARGET < PTARGET

To make this all work properly, a new line needs to be added to

STARTDATA.

MAKE 'PTARGET 5

The big advantage of changing all these procedures is that now you can

easily change the target size any time you want to just by changing the

number assigned to "RTARGET in STARTDATA. All the other changes will

then be made automatically.

218 / SHOOT: An Interactive Turtle Game

Section 10.6.
Making the Game Easier

Some new players may find even the original SHOOT game very diflR-

cult. For such players you will want to make an easier version of the game.

The simplest way to do this would be to make the target larger by reversing

the changes suggested in the last section—making the target have a radius

of 15 or 20, for example. If you already made the target size a variable by

following the suggestions in Section 10.5, you just have to change the line in

STARTDATA that sets the value of "RTARGET and everything else will be

reset automatically.

It might be even more interesting to make the game program “intelli¬

gent” enough to give a player some help after missing a shot. To do this,

the program needs to keep track of some more information. It needs to

know the distance and the angle from the starting point to the target and to

keep track of a player’s moves so that it can compare a missed shot with a

correct shot and give the player some advice. Here’s how that might work.

You will need to use the DISTANCE tool procedure and the Logo com¬

mand TOWARDS to calculate the distance and direction of the target from

the turtle’s starting position. Add two more variables to STARTGAME,

"DTARGET and "HTARGET, to keep track of the distance and the heading

of the target from the place where the turtle starts. You can do this by add¬

ing two more lines to STARTGAME.

MAKE "DTARGET DISTANCE :PTARGET

MAKE "HTARGET TOWARDS PTARGET

The first new line gives the name "DTARGET to the distance from the

turtle’s starting position to the target. The second uses TOWARDS to give

the name "HTARGET to the heading of the target from the starting position.

Later the computer will compare these values with the distance and heading

of the player’s actual shot. STARTGAME now becomes

TO STARTGAME

HIDETURTLE

DRAWTARGET PTARGET PTARGET

STARTTURTLE PSTART PSTART

MAKE "DTARGET DISTANCE PTARGET

MAKE "HTARGET TOWARDS PTARGET

SHOWTURTLE

END

SHOOT: An Interactive Turtle Game / 219

Figure 10.6: Two new variables, "DTARGET and "HTARGET, keep track of the starting

distance and the heading of the target.

Now you need to add a new variable called "SHOTANGLE to SHOOT

in order to keep track of the angle of the player’s shot. SHOOT already has

the variable "SHOT that keeps track of the distance of the shot.

TO SHOOT
MAKE "SHOTNUMBER :SHOTNUMBER + 1

MAKE "SHOTANGLE HEADING

PRINT [HOW FAR?] MAKE "SHOT READNUMBER

PENDOWN FORWARD :SHOT

TEST (DISTANCE PTARGET) < iRTARGET

IFTRUE [HIT]

IFFALSE [MISS]

END

The last thing to do is add a new command called HELP to MISS.

TO MISS
PRINT SENTENCE [MISSED SHOT NUMBER] .SHOTNUMBER

WAIT 200
STARTTURTLE :XSTART :YSTART :HSTART

HELP

END

HELP asks if the player wants help, and if so, it gives some adivce

about the next shot.

TO HELP
PRINT [WOULD YOU LIKE SOME HELP WITH YOUR NEXT SHOT?]

PRINT [PLEASE ANSWER YES OR NO.]

MAKE "ANSWER READLIST

IF :ANSWER = [YES] [GIVEADVICE STOP]

IF ;ANSWER = [NO] [STOP]

HELP

END

220 / SHOOT: An Interactive Turtle Game

Section 10.7.
Adding Instructions and
Changing Messages

Putting the command HELP in the last line forces a player to answer ei¬

ther yes or no. Any other answer will cause the computer to ask the ques¬
tion again.

Now you need the most important new subprocedure, GIVEADVICE.

This is the one that does all the “intelligent” work of checking the differ¬

ence between the player’s actual shot and a winning shot. See if you can

figure out how GIVEADVICE works.

TO GIVEADVICE

TEST :SHOT > (iDTARGET + iRTARGET)

IFTRUE [PRINT [TRY MAKING YOUR NEXT SHOT SHORTER.]]

TEST :SHOT < (rDTARGET - :RTARGET)

IFTRUE [PRINT [TRY MAKING YOUR NEXT SHOT LONGER.]]

TEST rSHOTANGLE > (:HTARGET + 5)

IFTRUE [PRINT [TRY TURNING THE TURTLE MORE TO THE LEFT,]]

IFTRUE [PRINT [OR LESS TO THE RIGHT.]]

TEST :SHOTANGLE < (:HTARGET - 5)

IFTRUE [PRINT [TRY TURNING THE TURTLE MORE TO THE RIGHT,]]

IF TRUE [PRINT [OR LESS TO THE LEFT.]]

END

Notice that GIVEADVICE allows for a range of possible distances and

angles. The procedure won’t give any advice about the distance if the last

shot landed within the correct range of distances, nor will it give any advice

about the angle if the shot was aimed within five degrees of the correct an¬
gle.

Does this advice really help anyone? You’ll have to try these changes

with a beginning player to see. Even if this particular set of procedures isn’t

really helpful, you might find it interesting to think about what a procedure

should “know” in order to give intelligent help to a learner.

Some people like a game to provide its own instructions. To do this,

just add to START a procedure called INSTRUCTIONS. Sometimes it’s hard

to decide exactly how much to tell someone about playing a game. It’s up

to you to decide what the instructions should be and how to print them on

the screen so they they are easy to read. You need to plan each line so that

it has no more than forty characters (including letters, numbers, and

spaces). It’s also probably a good idea to leave blank lines between different

instructions by using PRINT [] to print an empty list.

Another good idea is to let the player choose whether he or she wants

instructions. Nothing is more boring than having to read instructions before

playing a game you already know how to play.

Remember that different people read at different speeds. It’s nice to al¬

low each reader to decide when to go on to the next screen. You can use the

procedure WAITFORUSER (from Chapter 9) at the end of each page so that
the reader can control what happens.

SHOOT: An Interactive Turtle Game / 221

TO WAITFORUSER

PRINT [PLEASE PRESS RETURN]

PRINT READLIST

END

As explained in Section 9.6, the trick is that READLIST makes the com¬

puter wait until the user types a message. Because of the READLIST com¬

mand, the computer will wait for the reader to press RETURN before doing

anything else.
To change the messages printed throughout the game, you need to

change the procedures that print messages: SHOOT, HIT, MISS, and, if you

have them, HELP and GIVEADVICE. It is entirely up to you to decide what

these messages should say. Personally, I object to messages that insult me

when I’m playing a game, like

YOU DUMMY, YOU MISSED THE TARGET AGAIN!

Other people may find insulting messages funny. You have to decide

what you like. Remember that what may seem like a very funny message to

you when you’re inventing a game may get rather boring when you re see¬

ing it for the ninety-ninth time.

Section 10.8.
Putting All the Options
Together

By now you may have made several different versions of the SHOOT

game—the original one with a few special effects, a harder version, an easier

one that gives advice, one that offers instructions, etc. Now let’s put them

all together into one “supergame” that lets each player choose different

versions. To do this, we will have to add a procedure called CHOICES to

the beginning of the game. It should be the first command in the START

procedure.

TO START

CHOICES

CLEARSCREEN

STARTDATA

STARTGAME

END

TO CHOICES

TEXTSCREEN

CLEARTEXT
PRINT [WELCOME TO THE GAME OF SUPERSHOOT]

PRINT [DO YOU WANT INSTRUCTIONS?]

MAKE "ANSWER READLIST

IF :ANSWER = [YES] [INSTRUCTIONS]

CHOOSELEVEL

END

222 / SHOOT: An Interactive Turtle Game

PITFAU

TO CHOOSELEVEL

CLEARTEXT

PRINT [WHAT LEVEL GAME WOULD YOU LIKE TO PLAY?]

PRINT []

PRINT [1—EASY GAME: THE COMPUTER WILL HELP]

PRINT [2—MEDIUM GAME]

PRINT [3—HARD GAME]

PRINT []

PRINT [PLEASE TYPE 1, 2, OR 3.]

PRINT [THEN TYPE RETURN.]

MAKE "CHOICE READNUMBER

IF :CHOICE = 1 [MAKE "LEVEL "EASY STOP]

IF :CHOICE = 2 [MAKE "LEVEL "MEDIUM STOP]

IF :CHOICE = 3 [MAKE "LEVEL "HARD STOP]

CHOOSELEVEL

END

Sometimes people get confused when a variable happens to have a

word as its value. In this case, "EASY, "MEDIUM, and "HARD are not vari¬

able names. The value of the variable named by the word "LEVEL just hap¬

pens to also be a word.

The computer now “knows” whether the variable named "LEVEL has

the value "EASY, "MEDIUM, or "HARD. Now you can change the game pro¬

cedures to do the right thing, depending on what choice the player has

made. For example, we need three new lines in STARTDATA to choose the

target size for an easy, medium, or hard game.

IF :LEVEL = "EASY [MAKE "RTARGET 20]

IF :LEVEL = "MEDIUM [MAKE "RTARGET 10]

IF :LEVEL = "HARD [MAKE "RTARGET 5]

If a player chooses an easy game, we want the computer to give advice

whenever a shot is missed, so we add a line to MISS.

TO MISS

PRINT SENTENCE [MISSED SHOT NUMBER] :SHOTNUMBER

WAIT 200

RESTART :PSTART :HSTART

IF :LEVEL = "EASY [HELP]

END

HELP is the procedure we used in Section 10.6 with GIVEADVICE as a
subprocedure.

STARTGAME also has to include the lines from Section 10.6 that give

names to the values "DTARGET and "HTARGET.

If the player chooses to play a medium game, nothing else has to hap¬

pen. For a hard game, we want the computer to erase the line drawn by the

turtle after each shot. This happens by using PENREVERSE in the SHOOT

procedure and making sure there is no PENUP command in the RESTART

procedure, as described in Section 10.5.

SHOOT: An Interactive Turtle Game / 223

TO SHOOT
MAKE "SHOTNUMBER :SHOTNUMBER + 1

MAKE "SHOTANGLE HEADING

PRINT [HOW FAR?]
MAKE "SHOT READNUMBER
TEST :LEVEL = "HARD
IFTRUE [PENREVERSE]
IFFALSE [PENDOWN]
FORWARD :SHOT
TEST (DISTANCE :PTARGET) < :RTARGET

IFTRUE [HIT EXPLODE 20]

IFFALSE [MISS]

END

and

TO RESTART PSTART iHSTART
SETPOS PSTART
SETHEADING PSTART

END

MTMU

This example clearly shows how complicated things can get when you

make changes to a system of procedures like the SHOOT game. You’re al¬

most sure to have forgotten something somewhere. There’s no substitute

for trying the game several times after making changes to make sure that

everything works properly.
When you test a game, make sure you try every possible choice and

play the game all the way through each time. Better still, find a friend who

is willing to help you by playing the game several times, looking for bugs.

Be careful though—your friend may have several new suggestions for im¬

proving the game and you may find that your project isn’t finished yet!

224 / QUICKDRAW: A Turtle Drawing Activity for Young Children

CHAPTER 11

Short
Command Form Examples With Inputs

throw if :C0M = "E [THROW "TOPLEVEL]
thing print thing PICT

LWAL Procedures Disk files used: "QUICKDRAW, "READKEY

"READNUMBER

New tool procedures used:

Tool Procedure Examples

READKEY MAKE "COM READKEY

QUICKDRAW: A Turtle Drawing Activity for Young Children / 225

11 QUICKDRAW: A Turtle Drawing
Activity for Young Children

In Chapter 3 QUICKDRAW was used as an introductory activity. Pro¬

grams like QUICKDRAW were originally invented for very young chil¬

dren so that they could draw with the turtle and begin to explore Logo

without the difficulty of typing out full Logo commands and input numbers.

Similar programs have been used with people who have physical disabilities

that make it hard for them to type.
QUICKDRAW is an interactive project like the quizzes of Chapter 9 or

the SHQQT game of Chapter 10. It differs from those games by using single¬

key inputs from the keyboard. Each key stands for an action. As soon as

you press a key, something happens. You don t even have to type RETURN

first. This makes it really easy for a beginner to use.

jwffixm iscA

There is a very important idea here. You can use Logo to change the

way Logo itself works! People often ask, “What is the earliest age at which

children can begin to learn Logo?” My answer is usually something like,

“You can adapt Logo for children of just about any age. All you have to do

is decide how you’d like it to be, and then create a Logo procedure to make

it that way.” What you’re really doing is using Logo to create a special

learning environment for someone special.
I suggest that you try this as a project: find someone a lot younger than

you are and use QUICKDRAW as a starting point for making a Logo learn¬

ing environment. Watch carefully as it is used and redesign it to make it

better. I’ll explain more about how to do this at the end of this chapter.

Section 11.1.
How the QUICKDRAW
Procedures Work

Before reading this chapter, reread Section 3.2 of Chapter 3, “Drawing

with an ‘Instant’ Turtle.” This will remind you of how QUICKDRAW

works. If you already have the "QUICKDRAW file on your LWAL Proce¬

dures Disk, you might also want to play with QUICKDRAW for a while be¬

fore reading any further.
QUICKDRAW uses the tool procedure READKEY, which is also on the

LWAL Procedures Disk. If you are typing in the procedures now, load the

"READKEY file from the LWAL Procedures Disk before going on. If you

don’t have READKEY on your LWAL Procedures Disk, you can copy it

from Appendix I.
First, let’s look at a very simple quick-drawing program, then we can

improve it to be the same as the one in Chapter 3. Finally, I’ll show you

some other extensions and improvements you can make.

A quick drawing program has to be able to “read the keys that a user

226 / QUICKDRAW: A Turtle Drawing Activity for Young Children

NTFAU

Section 11.2.
Making QUICKDRAW
Remember Its Moves

types. If the user types F the turtle should move forward a little bit. If R or

L are typed the turtle should turn right or left. The drawing should end

when E is typed. (The keys F, R, L, and E are chosen because they corre¬

spond to the Logo commands FORWARD, RIGHT, LEFT, and END. You

can choose any keys you like for this. Some people like to group the keys

in one place on the keyboard to make them easier to find. I like to use these

particular keys because it helps someone to use standard Logo commands.

Type in DRAW, then type QUICKDRAW and try it.

TO QUICKDRAW

COMMAND

QUICKDRAW

END

TO COMMAND

MAKE "COM READKEY

IF :COM = "F [FORWARD 20]

IF :COM = "R [RIGHT 30]

IF :COM = "L [LEFT 30]

IF :COM = "E [THROW "TOPLEVEL]

END

QUICKDRAW is about as simple as it could be. It calls COMMAND to

get a new command from the user and then calls another QUICKDRAW pro¬

cedure. COMMAND is also a very simple procedure. The first line gives the

name "COM (short for “command”) to whatever key the user types. The

next four lines check to see if this is one of the active keys, F, R, L, or E. If

not, nothing happens. If :COM is one of the active keys, the rest of the line

tells the computer what to do—move the turtle, turn it, or stop the proce¬

dure. When the command THROW "TOPLEVEL is used in any procedure, it

makes all procedures stop. The Logo ? prompt appears and the user must

type commands on the keyboard to make something happen.

You might think that the Logo command STOP would do this, but

STOP only stops the procedure it is in. In this case, using the STOP com¬
mand in the line

IF :COM = "E [STOP]

would not stop QUICKDRAW; it would stop only COMMAND.

QUICKDRAW would then go on to its next line and call another

QUICKDRAW, which calls COMMAND, and so on. Try using STOP in place

of THROW "TOPLEVEL and see what happens. This is a very common

bug—one that can be very difficult to detect.

The QUICKDRAW procedure we have right now can draw pictures only

once. When the screen is cleared, the picture is forgotten forever. We need

a way to give a picture a name and keep track of all the steps in it so that it

can be redrawn on command. There are many ways to accomplish this. In

QUICKDRAW: A Turtle Drawing Activity for Young Children / 227

this version, QUICKDRAW keeps a list of all the commands that have been

typed. When you finish a drawing, that list is given a name. Another proce¬

dure, REDRAW, uses that list to redraw the original picture whenever you

want it. ^ A
To make QUICKDRAW work the way it did in Chapter 3, we need a su¬

perprocedure that we’ll call QD and several other new procedures. Here is

a procedure tree showing QD and its subprocedures.

QD
1

START QUICKDRAW

I
COMMAND QUICKDRAW

I

ADDLETTER SiSH I

The superprocedure QD and its subprocedures START and

QUICKDRAW are still quite simple:

TO QD

START

QUICKDRAW

END

QD calls START to get things going and then calls QUICKDRAW.

TO START

MAKE "DRAWLIST [1

CLEARSCREEN

END

"DRAWLIST is the list used to keep track of all the commands typed.

START makes it an empty list, [], and clears the turtle’s screen.

TO QUICKDRAW

COMMAND

QUICKDRAW

END

QUICKDRAW remains the same, although its subprocedure

COMMAND, is changed to include two new procedures, ADDLETTER,

which adds letters to :DRAWLIST, and FINISH, which makes the user give

the drawing a name. Another command has also been added to allow the

turtle to move backward as well as forward.

228 / QUICKDRAW; A Turtle Drawing Activity for Young Children

TO COMMAND

MAKE "COM READKEY

IF ;COM = "F [FORWARD 20 ADDLETTER :COM]

IF :COM = "B [BACK 20 ADDLETTER :COM]

IF ;COM = "R [RIGHT 30 ADDLETTER :COM]

IF :COM = "L [LEFT 30 ADDLETTER :COM]

IF .COM = "E [FINISH THROW "TOPLEVEL]
END

TO ADDLETTER iLETTER

MAKE "DRAWLIST SENTENCE :DRAWLIST :LETTER
END

ADDLETTER uses SENTENCE to add a new letter to :DRAWLIST ev¬
ery time any command is carried out.

TO FINISH

SPLITSCREEN

PRINT [PLEASE CHOOSE ONE WORD AS A NAME]

PRINT [FOR THIS DRAWING.]

PRINT [TO FORGET IT, JUST PRESS RETURN]

MAKE "REPLY READLIST

IF :REPLY = [] [STOP]

MAKE (FIRST :REPLY) :DRAWLIST
END

Here’s the last line of FINISH again, with its input more clearly separat¬
ed:

MAKE (FIRST :REPLY) .DRAWLIST

This last line uses MAKE in a new way. Every time we’ve used MAKE
before, it has been something like

MAKE "START HEADING

where MAKE’s first input is a one word name and its second input is a piece

of Logo data. This time, MAKE gets its first input from :REPLY, a one word

list that the user just typed. (The Logo command READLIST always outputs

a list.) Since .REPLY is a list and MAKE needs a word as its first input, we

use the Logo command FIRST to get the first word of :REPLY and use it as

MAKE’S first input. MAKE’s second input is :DRAWLIST, the list of letters

that has stored all the commands used so far by QUICKDRAW.

QUICKDRAW: A Turtle Drawing Activity for Young Children / 229

HELKKS Him

The tricky point here is the difference between a word and a list with only one word in it,

and the way you can turn a one-word list into a word using FIRST. Try this.

PRINT [HELLO]
HELLO
PRINT "HELLO
HELLO
PRINT "HELLO = [HELLO]
FALSE

Even though [HELLO] and "HELLO look the same when you print them, they are different
objects to Logo. We can make them identical by using FIRST.

PRINT FIRST [HELLO]
HELLO
PRINT "HELLO
HELLO
PRINT "HELLO = FIRST [HELLO]
TRUE

So FIRST [HELLO] is the same as the word "HELLO. The first item in a one-word list is a
word. That is why FIRST :REPLY was used as the first input for MAKE in the command

MAKE (FIRST :REPLY) :DRAWLIST

Redrawing Pictures To redraw any picture that has a name, we need the procedure RD,

that uses :DRAWLIST as its input.

TO RD :DRAWLIST
IF :DRAWLIST = [] [STOP]
RECOMMAND FIRST iDRAWLIST
RD BUTFIRST :DRAWLIST

END

fmaaiKA

RD is a classic “list-processing” procedure. Its pattern is repeated over

and over again in more advanced Logo programming. Similar patterns are

used in some of the tool procedures that are described in Chapter 14. This

is the pattern:
RD takes a list as its input. First, it checks to see if the list is empty. If

it is, RD stops. If the list is not empty, RECOMMAND does something with

the first element of the list.
Finally, another RD is called, with BUTFIRST (everything hut the first

element) of its original list as input. As each RD calls the next one with

BUTFIRST :DRAWLIST as input, the input lists keep getting shorter and

shorter. Eventually RD will be given an empty list, [], as input and it will

stop.

RD’s subprocedure RECOMMAND carries out each of the commands in

the list. RECOMMAND is a lot like COMMAND, except that it uses an in¬

put—the first letter on the draw list—rather than getting a command direct-

ly from the user.

230 / QUICKDRAW: A Turtle Drawing Activity for Young Children

HElKKi mt

Section 11.3.
Improving QUICKDRAW

TO RECOMMAND :COM

IF :COM = "F [FORWARD 20]

IF :COM = "B [BACK 20]

IF :COM = "R [RIGHT 30]

IF COM = "L [LEFT 30]

END

When you use RD, you have to give it a list as input. If your drawing

was given the name "HOUSE, you would type

RD :HOUSE

to redraw it, as described in Chapter 3. The reason you type :HOUSE as in¬

put for RD rather than "HOUSE or just plain HOUSE, is that RD needs a list

of letters as input. "HOUSE is the name of the particular list that was used

to draw the house. :HOUSE, the value of the variable "HOUSE, is the list

you want.

QUICKDRAW offers another example of why it is critical to distinguish between the name
of an object and the object itself. One way to help someone understand the relation between
the list of drawing commands and the name of that list is to keep track of the process while it
is happening. Make the computer print out the value of :DRAWLIST as each new command is
added and have it print out the final list whenever a picture is finished. Add this line to
QUICKDRAW just after COMMAND:

PRINT SENTENCE [:DRAWLIST IS NOW] :DRAWLIST

and a similar line to the end of FINISH

PRINT (SENTENCE WORD ": FIRST :REPLY [IS NOW] :DRAWLIST)

These new command lines don’t change the functions of the procedures at all. They are
for learning purposes only and can be removed after they have served their purpose.

Another way to implement a procedure like QUICKDRAW is given in Chapter 9 of
Harold Abelson’s books Logo for the Apple II and Apple Logo, and in Chapter 10 of
Abelson’s 77 Logo. Abelson’s INSTANT procedure uses the Logo command DEFINE to
create a new procedure when the user is finished drawing and has named the picture. This
makes it even simpler to use because there is no need for an RD procedure. Each picture can
be redrawn just by typing its name. Since I do not discuss the use of the DEFINE command in
this book, I have chosen a different method. All the ideas for extending QUICKDRAW given
in the next sections of this chapter can be used to extend Abelson’s INSTANT procedure as
well.

In this section. I’ll show you how to make some improvements to

QUICKDRAW. You’ll probably think of many more yourself if you work

with a younger person who is actually using QUICKDRAW. Let the younger

person decide what the program should do. Then see if you can make it

happen. Here are a few suggestions.

1. Add new commands to CQMMAND and RECOMMAND. For exam¬

ple, if you want to make it possible to draw circles, load the file called

"CIRCLES from the LWAL Procedures Disk and add this line to

COMMAND:

QUICKDRAW: A Turtle Drawing Activity for Young Children / 231

IF :COM = "C [RCIRCLE 10 ADDLETTER :COM]

Then add a corresponding line to RECOMMAND:

IF :COM = "C [RCIRCLE 10]

If you have a color TV or monitor, you’ll probably want to add color

commands. You might want to use numbers for these.

IF :COM = "0 [SETPC 0 ADDLETTER :COM]

IF :COM = "1 [SETPC 1 ADDLETTER :COM]

IF :COM = "2 [SETPC 2 ADDLETTER :COM]

Also add corresponding lines to RECOMMAND.

Or add commands to COMMAND and RECOMMAND for PENUP and

PENDOWN.

IF :COM = "U [PENUP ADDLETTER :COM]

IF :COM = "D [PENDOWN ADDLETTER :COM]

2. Make a command to clear the screen and make :DRAWLIST empty

again, if you don’t like the picture at all. Add this line to COMMAND:

IF :COM = "Q [START]

START is the procedure in QD that starts everything off.

In this case you don’t use ADDLETTER because you’re not adding to

the list—you’re emptying it. You also don’t need a line for this in the

RECOMMAND procedure. Once you type Q, you’ll have to start drawing all

over again.

3. Make it possible to add an existing drawing (one that already has a

name) to the one you’re drawing. To do this, you need a new line in the

COMMAND procedure:

IF :COM = "A [ADDPICTURE]

and a new procedure called ADDPICTURE:

TO ADDPICTURE

PRINT [WHICH PICTURE DO YOU WANT TO ADD?]

MAKE "PICT FIRST REQUEST

RD THING :PICT

ADDLETTER THING :PICT

END

ADDPICTURE needs a little bit of explanation. THING is a Logo com¬

mand that outputs the value associated with a name. When you type in a

name, the second line of ADDPICTURE,

MAKE "PICT FIRST REQUEST

gives the name you type a new name—"PICT. RD and ADDLETTER

232 / QUICKDRAW: A Turtle Drawing Activity for Young Children

both need lists as inputs. PICT is a word that is the name for a list.

THING PICT is the list that goes with the name PICT.

To understand it better, try it out with direct commands. First make a

list of commands

MAKE "SILLYPICTURE [F F R R F]

MAKE "PICT "SILLYPICTURE

This is what happens in the second line of ADDPICTURE. Now type

PRINT PICT

SILLYPICTURE
PRINT THING "SILLYPICTURE

F F R R F
PRINT :SILLYPICTURE

F F R R F
PRINT THING PICT

F F R R F

The last three of these commands should all print the same list of

letters since PICT is "SILLYPICTURE and THING "SILLYPICTURE,

:SILLYPICTURE, and THING PICT are all different ways of getting the

same Logo object—the list [F F R R F],

If you don’t completely understand this now, don’t worry. Using a

name to stand for another name can be quite confusing. Just make sure that

ADDPICTURE works properly.

4. The final change I’ll suggest is to vary the turtle step and turning an¬

gle used in COMMAND and RECOMMAND. This can be done by changing

all the command lines that move or turn the turtle and adding some lines to

START that set the values of these variables.

TO START

MAKE "DISTANCE 20

MAKE "ANGLE 30

MAKE "DRAWLIST []

CLEARSCREEN

END

TO COMMAND

MAKE "COM READKEY

IF :COM = "F [FORWARD DISTANCE ADDLETTER :COM]

IF :COM = "B [BACK DISTANCE ADDLETTER :COM]

IF :COM = "R [RIGHT :ANGLE ADDLETTER :COM]

IF :COM = "L [LEFT :ANGLE ADDLETTER :COM]

IF :COM = "C [RCIRCLE DISTANCE ADDLETTER :COM]

IF ;COM = "E [FINISH THROW "TOPLEVEL]

END

QUICKDRAW; A Turtle Drawing Activity for Young Children / 233

TO RECOMMAND :COM
IF :COM = "F [FORWARD :DISTANCE]
IF :COM = "B [BACK :DISTANCE]
IF :COM = "R [RIGHT lANGLE]
IF :COM = "L [LEFT ;ANGLE]
IF :COM = "C [RCIRCLE DISTANCE]

END

To change these commands, just change the values given in the first

two lines of START.
If you want to get just a little fancier, you can add procedures that will

allow the user to change these values. To do this, you’ll need three new
procedures: CHANGE, GETSIZE, and GETANGLE. First, change START to

include CHANGE.

TO START
MAKE "DISTANCE 20
MAKE "ANGLE 30
MAKE "DRAWLIST []
CLEARSCREEN
CHANGE
CLEARTEXT

END

TO CHANGE
PRINT SENTENCE [THE TURTLE NOW MOVES FORWARD]

:DISTANCE
PRINT [IF YOU WANT TO CHANGE IT TYPE Y]
IF READLIST = [Y] [GETSIZE]

PRINT []
PRINT SENTENCE [THE TURTLE’S TURNING ANGLE IS NOW]

:ANGLE
PRINT [IF YOU WANT TO CHANGE IT TYPE Y]
IF READLIST = [Y] [GETANGLE]

END

TO GETSIZE
PRINT [HOW BIG DO YOU WANT THE TURTLE’S]
PRINT [FORWARD STEP SIZE TO BE?]
MAKE "DISTANCE READNUMBER
PRINT SENTENCE [THE FORWARD STEP SIZE IS NOW] iDISTANCE

END

TO GETANGLE
PRINT [HOW BIG DO YOU WANT THE TURTLE’S]
PRINT [TURNING ANGLE TO BE?]
MAKE "ANGLE READNUMBER
PRINT SENTENCE [THE TURNING ANGLE IS NOW] :ANGLE

END

READNUMBER is a tool procedure that can be read from a file on the

LWAL Procedures Disk or copied from Chapter 14.
Every time you start a drawing, the computer will give you a chance to

234 / QUICKDRAW: A Turtle Drawing Activity for Young Children

change the values of the size and the angle. If you don’t want to change
them, just type RETURN. If you have added a “quit” (Q) command as part
of COMMAND,

IF :COM = "Q [START]

you should change it to

IF :COM = "Q [CLEARSCREEN MAKE "DRAWLIST []]

so that your distance and angle values are not changed when you erase a
drawing and start over.

r

I
1
?

[

236 / Animating the Turtle; Building a Racetrack Game

CHAPTER 12

Command
Short
Form Examples With Inputs

PADDLE FORWARD PADDLE 0

BUTTONP
PRINT PADDLE 1
IF BUTTONP 1 [CLEARSCREEN]

REMAINDER PRINT REMAINDER 17 3
AND IF AND (YCOR > 0) (XCOR > 0) [STOP]
XCOR PRINT XCOR, SETX XCOR + 20
YCOR PRINT YCOR, SETY YCOR - 20
OUTPUT OP OUTPUT "FALSE, OP :LENGTH + 10

LWAL Procedures Disk files used: "READKEY, "CCIRCLE, "DISTANCE,
"BOXES, "RACE

New tool procedures used:

Tool Procedure

DRAWBOX
INBOX?
OUTBOX?

Examples

DRAWBOX 0 0 50 30
IF (INBOX? 0 0 50 30) [STOP]
IF (OUTBOX? -20 -20 70 50) [STOP]

Animating the Turtle: Building a Racetrack Game / 237

12 Animating the Turtle: Building a
Racetrack Game

Playing an animated game is one of the most exciting things you can do
with a computer. This chapter tells how to make a simple game using

an animated turtle.
Animating an object means giving it motion so that it seems to come to

life, seems to be like an animal. To animate the turtle, you make a proce¬
dure that keeps it moving until you change its motion by pressing command
keys on the keyboard. It’s easy to make a procedure that keeps the turtle
moving. A lot of the turtle design procedures from earlier chapters will do
that. The QUICKDRAW procedure in Chapter 11 shows how to control the
turtle from the keyboard. In this chapter, these ideas are combined to cre¬

ate an action game with the turtle.
Drawing with an animated turtle can be a lot of fun all by itself. I’ll

show you how to control it using game paddles instead of keys on the key¬
board. Then we will make the activity into a game by drawing a racetrack
and driving the turtle around it. Finally, you can improve the game by add¬
ing procedures that check to see if the turtle is on or oflF the racetrack and

whether the race is finished.
Some versions of Logo include objects called sprites which are de¬

signed to make animation very easy, in the same way that the turtle is de¬
signed to make drawing easy. Sprites can take on many shapes and colors
and can move freely around the TV screen. I don’t have space in this book
to talk about sprites, but I will say that they are very colorful, fast, and ex¬
citing. If your ambition as a programmer is to invent videogame programs,
versions of Logo that have sprites would help you do that easily.

Section 12.1. Here is the simplest procedure that makes the turtle keep moving. I call
Animating the Turtle it DRIVE because I think of this kind of activity as driving the turtle.

TO DRIVE :DISTANCE
FORWARD :DISTANCE
DRIVE iDISTANCE
END

DRIVE 1 will move the turtle forward one step at a time. DRIVE 10
makes it move ten times as far each time. Since it’s taking bigger steps, it

also appears to be moving faster.
A turtle that just moves forward isn’t very interesting. You need to be

able to change its motion as it moves. You can do this by adding a
COMMAND procedure that reads the keyboard.

238 / Animating the Turtle: Building a Racetrack Game

TO DRIVE DISTANCE
FORWARD DISTANCE
COMMAND
DRIVE DISTANCE
END

COMMAND will check to see if you type a special command key. If so,
it carries out that command. Then DRIVE makes the turtle move forward
again. If you don’t type a command, COMMAND stops without doing any¬
thing, and DRIVE keeps moving the turtle forward. COMMAND uses the
tool procedure READKEY. Load the "READKEY file from the LWAL Pro¬
cedures Disk, or copy the procedure from Appendix I:

TO COMMAND
MAKE "COM READKEY
IF :COM = " [STOP]
IF :COM = "R [RIGHT 30 STOP]
IF :COM = "L [LEFT 30 STOP]
END

The first line of COMMAND gives the name "COM (short for “com¬
mand”) to the letter typed by the user. The second line of COMMAND is
not a mistake. A " symbol with nothing after it is an empty word, that is, a
word with nothing in it. An empty word is the message sent by READKEY
if you don’t type anything. The second line of COMMAND stops the proce¬
dure immediately if you don’t type anything. The STOP command on the
end of each of the other lines stops the COMMAND procedure as soon as it
finds the letter you typed and carries out the action you have commanded.
Without a STOP command on each line, the computer would check more
things than it had to and slow the whole process down considerably. This
might not matter much when you’ve only got two commands, but it will
make a big difference as you start improving your drive program by adding
more commands.

Now you can drive the turtle around the screen without any trouble. If
you give DRIVE a large input the turtle will move faster. With a smaller in¬
put, it will move slower and give you more control.

Try drawing designs using DRIVE. Can you make the turtle draw a cir¬
cle? How about making it write your name or initials? Draw some other
shapes on the screen and see if you can make the turtle move around with¬
out touching them. Figure 12.1 shows some shapes that you might be able
to draw with DRIVE.

smmitm

1

I
I

l‘

I

HOKf&iUMT

Animating the Turtle: Building a Racetrack Game / 239

I want to mention some subtleties of the COMMAND procedure. First of all, let s think
about the concept of an empty word. The concept of an empty object is very dear to
mathematicians but seems terribly abstract to ordinary people. This procedure, however,
shows how an empty word can be really important in Logo programming. Empty words or
empty lists are often used in conditional commands to tell Logo when a process should be
stopped. (In DRIVE, this happens when you don’t type anything.)

COMMAND could very well have been introduced without the empty word and without

the STOP command on every line.

TO COMMAND
MAKE "COM READKEY
IF :COM = "R [RIGHT 30]
IF :COM = "L [LEFT 30]
END

i

240 / Animating the Turtle: Building a Racetrack Game

In this limited version of COMMAND, with only two letters to be checked, adding one

extra line and STOP to the other lines wouldn’t speed up the computer very much. But as we

expand the project, there will be more and more things to check, and then the speed with

which the COMMAND procedure does its Job will be critical to the enjoyment of the activity.

This kind of situation always poses a problem for me as a teacher. Do I introduce the

simpler idea and wait for the more complex version to be needed by someone before I show

it, or do I anticipate a future problem and show someone a more complex idea at the

beginning to save having to modify a procedure later? There is no obvious answer to this

question. When I teach person-to-person, I tend to prefer the first method—introduce a more

complex idea only when it is needed. This usually gives someone a better understanding of

what is being learned. For example, if you experience the problem of the process slowing

down as more and more conditional commands are added, you have a better idea of what the

computer is really doing as well as a better understanding of the particular control techniques
being introduced.

Writing a book forces me to make a decision without knowing what the learner is

thinking. In this case I’ve decided that fast response is so important to the animation process

that I should introduce it right from the start. When you teach this kind of technique to

someone, you might make a different decision and leave out the STOP commands and the

empty word entirely, or not introduce them until there is a clear need.

Section 12.2. Now that you can move the turtle around freely, you may want to en-

Improving the Animation hance the COMMAND procedure to give you more control over the turtle’s

motion. It’s really easy to add new commands—just decide what letter to

use for a particular action and add a new line to COMMAND. Here are

some examples that other people have enjoyed.

IF :COM = "D [PENDOWN STOP]

IF .COM = "U [PENUP STOP]

IF :COM = "F [MAKE "DISTANCE .DISTANCE + 1 STOP]

IF .COM = "S [MAKE "DISTANCE DISTANCE - 1 STOP]

IF :COM = "C [RCIRCLE DISTANCE * 5 STOP]

You can also add commands for pencolors. One way to do this would

be to use numbers.

IF :COM = 0 [SETPC 0 STOP]

IF ;COM = 1 [SETPC 1 STOP]

and so on.

Some people like to add commands like this one to make the turtle do

something unexpected.

IF :COM = "Z [ZAP STOP]

TO ZAP

PENUP

RIGHT 90

FORWARD 100

LEFT 90

PENDOWN

END

Animating the Turtle: Building a Racetrack Game / 241

Section 12.3.
Animating the Turtle
Using Game Paddles

This command makes the turtle move instantly to another part of the

screen and then keep going in its original direction. Another favorite is to

make the turtle stop in its tracks (without stopping the procedure).

IF :COM = "H [HALT STOP]

TO HALT

MAKE "DISTANCE 0

END

To start the turtle moving again, just press the F or the S key.

Some people prefer to have all the command keys near each other on

the keyboard rather than using the letters to stand for the action. In this

case you might want to make a little chart showing the location of your

command keys and the function of each one.

FASTER

TURN RIGHT

Figure 12.2: A chart of the command keys helps you remember what each one does.

If you have a set of game paddles for yo"-- Apple, you can make a

DRIVE procedure using game paddle inputs. The primitive Logo commands

that let you do this are PADDLE 0, PADDLE 1, BUTTONP 0, and

BUTTONP 1. PADDLE 0 and PADDLE 1 both output numbers from

0 to 255 depending on the position of the paddle. BUTTONP 0 and

BUTTONP 1 output 'TRUE or "FALSE messages depending on whether the

button is pressed down. Here is a simple procedure for paddle control:

TO PADDLECONTROL

FORWARD ((PADDLE 0) - 128) / 10

RIGHT ((PADDLE 1) - 128) / 5

IF BUTTONP 0 [CHANGECOLOR]

IF BUTTONP 1 [CLEARSCREEN]

END

TO CHANGECOLOR
MAKE "COLOR REMAINDER (:COLOR + 1)6

SETPC :COLOR

END

242 / Animating the Turtle: Building a Racetrack Game

REMAINDER is a Logo command that outputs the remainder left when

its first input is divided by its second. Try this:

REMAINDER 12 7

5
REMAINDER 3 3

0
REMAINDER 0 7

0

You can start the activity with a SETUP procedure.

TO SETUP

CLEARSCREEN

MAKE "COLOR 1

SETPC :COLOR

END

Instead of DRIVE, use this procedure:

TO PDRIVE

PADDLECONTROL

PDRIVE

END

If you want more control, you can add a COMMAND procedure with

keyboard commands as well.

PADDLECONTROL and CHANGECOLOR use some fancy mathemat¬

ics. Let’s look at some of their commands.

FORWARD ((PADDLE 0) - 128) / 10

((PADDLE 0) - 128) can have a value of 127 (255 - 128), if paddle 0

is turned all the way to right, and -128 (0 - 128), if paddle 0 is turned all

the way to the left. By dividing this number by 10, the forward distance is

limited to a range of 12.7 to -12.8. To stop the turtle, adjust the paddle so

that it is in the middle.

RIGHT ((PADDLE 1) - 128)/5

Dividing ((PADDLE 1) — 128) by 5 limits the right turn angles to be¬

tween 22.4 degrees and —22.25 degrees. To make the turtle move straight

ahead, adjust the paddle so that it is in the middle.

Experiment with different numbers for the divisors in these lines to see

what effects they have.

CHANGECOLOR uses some interesting arithmetic too.

REMAINDER (:COLOR + 1)6

outputs the remainder of :COLOR + 1 divided by 6. Setting the new pen-

color to this value ensures that it will always be between 0 and 5. Every

time you change the color by holding down the button on paddle 0, the pen-

color number will increase by 1. When :COLOR is 5, the next new value

will be the remainder of (5 + 1) divided by 6. The remainder of 6 divided by

6 is 0. The pencolor will now be set to 0 and the numbers will start increas¬

ing again.

Animating the Turtle: Building a Racetrack Game / 243

Section 12.4.
Racing with the Turtle,

Part I

PDRIVE shows how paddle input commands work. Paddle inputs can

also be used in a lot of other projects. For example, you can make a version

of SHOOT that uses paddle inputs instead of inputs typed at the keyboard.

Or use paddle inputs for a polyspi procedure like the ones in Chapter 8.

TO PADDLESPI :SIZE

FORWARD ;SIZE

RIGHT PADDLE 0

PADDLESPI :SIZE + ((PADDLE 1) / 20)

END

PADDLESPI uses the value output by PADDLE 0 to control the angle

and the value output by PADDLE 1 to control the increase in size. This is

another way to animate the turtle and keep changing its motion.

The easiest way to use the DRIVE procedure for a racing game is to

draw a racetrack and drive the turtle around it. To do this, load the file

called "CIRCLES from the LWAL Procedures Disk and draw a circular

racetrack. Put the turtle on the track and give the DRIVE command.

In this simple game, the computer does not keep track of the turtle s

motion. You can drive it anywhere you want. To make more of a game out

of it, you can make the turtle stop if it crashes through the wall or goes all

the way around the track without crashing.
Since the computer is not checking anything, you can make the track

any shape you want, add obstacles to be avoided, design dead ends, etc.

244 / Animating the Turtle: Building a Racetrack Game

Use your imagination to build an exciting track and then see how well you

can do at keeping the turtle from crashing at fast speeds. Or design a maze

and see if you can drive the turtle around it without hitting a wall.

Figure 12.4: A turtle racetrack can be simple or complex.

Animating the Turtle: Building a Racetrack Game / 245

mtKf&HIHT

Section 12.5.
Racing with the Turtle,
Part II

This extremely simple-minded racetrack game is amazingly satisfying for many people.
The freedom to design a number of different racetracks and the kinetic experience of driving
the turtle around them provide enjoyable opportunities for exploring the behavior of the turtle

and the creation of geometric shapes.
I have used this kind of DRIVE procedure to create a domain for introductory drawing

projects like those in Chapter 6. 1 provide the DRIVE procedures as tools and let the students
have the fun of designing visual environments in which the turtle can play. Eventually, of
course, the DRIVE program itself becomes an object of interest, providing a learner with a
different kind of introduction to recursion and conditional statements.

The next step—designing a game in which the computer keeps track of the turtle’s
position—involves a fair amount of data processing and can be a large leap for many people.
Don’t dismiss the value of the kind of simple activity described in this section.

Now let’s make the computer do the work of keeping track of the tur¬

tle’s progress. A sample RACE game can be read from a file on the LWAL

Procedures Disk. Load the "RACE file or copy the RACE procedures from

Appendix I. To play the game, type RACE and use the F, S, R, and L keys

to move the turtle around. I’ll explain how the game works in this section

and give some ideas for changing or improving it in the next.

As the turtle races around its circular track, the computer decides if it

has crashed into the wall or crossed the finish line. When the race is over, it

tells you your score—the time it took you to complete one lap. The object

of the game is to make your score as low as possible while keeping the tur¬

tle safely on the track. A procedure called RESTART allows you to start

again without redrawing the track.
The RACE procedures make use of three tool procedures that were

246 / Animating the Turtle: Building a Racetrack Game

also used in the SHOOT game of Chapter 10: CCIRCLE, DISTANCE, and

READKEY. You can load them from files on your LWAL Procedures Disk

or copy them from Appendix I. Here is the procedure tree for the RACE

game:

RACE

DRAWTRACK SETSTART RACECAR

The superprocedure RACE is very simple:

TO RACE

DRAWTRACK

SETSTART

RACECAR 0

END

DRAWTRACK and SETSTART create the starting conditions. I’ll talk

about them later. RACECAR is the procedure that does all the real work of

the game.

TO RACECAR :TIME

IF CRASHED? [CRASH STOP]

IF FINISHED? [FINISH STOP]

FORWARD :D1STANCE

COMMAND

RACECAR :T1ME + 1

END

:TIME is a variable that keeps track of the elapsed time. Since the Ap¬

ple computer doesn’t really measure time directly, we measure it indirectly

by increasing RACECAR’s input by 1, every time it calls another version of

itself.

CRASHED? and FINISHED? are the most interesting new procedures.

They are question procedures that have the job of checking the turtle’s po¬

sition and deciding whether the game is over. CRASHED? will output the

answer "TRUE if the turtle has crossed an edge of the track. If the turtle has

not hit an edge, CRASHED? outputs "FALSE. Since the outer circle has a

radius of 70 and the inner circle a radius of 50, CRASHED? has to output

'TRUE if the distance to the center is larger than 70 or smaller than 50.

pmsmiuA

Animating the Turtle: Building a Racetrack Game / 247

TO CRASHED?

IF (DISTANCE [0 0]) > 70 [OUTPUT "TRUE]

IF (DISTANCE [0 0]) < 50 [OUTPUT "TRUE]

OUTPUT "FALSE

END

Figure 12.6: The turtle has “crashed” on the edge of the racetrack.

In a game like this it’s a good idea to choose the geometry so that the

checks are easy for you to figure out and for the computer to calculate. Cir¬

cles were deliberately chosen for the RACE game because it’s so easy to

check whether an object is inside or outside of a circle—just check whether

the distance from the object to the center of the circle is more or less than

the circle’s radius. Choosing a shape that’s easy to check is half the battle

in making a game procedure like this work without a lot of blood, sweat,

and tears.

If the answer to CRASHED? is "TRUE, the rest of the IF statement is

carried out. CRASH prints a message and RACECAR stops.

TO CRASH
PRINT [YOU CRASHED INTO THE TRACK WALL!]

END

If the answer to CRASHED? is "FALSE, the computer goes on to the

next line to find the answer to the FINISHED? question. The way that the

computer answers this is a little bit tricky. The finish line is placed along a

horizontal line with its Y-coordinate equal to zero. When the turtle crosses

the finish line, it moves from a position at which its Y-coordinate was nega¬

tive, as shown in Figure 12.7a, to a positive Y-coordinate as shown in Fig¬

ure 12.7b. The FINISHED? procedure uses this idea to decide whether the

race is over.

248 / Animating the Turtle: Building a Racetrack Game

When the turtle crosses the line, two things will be true. Its present

Y-coordinate will be bigger than zero, and its previous Y-coordinate will

have been less than zero. The computer has to compare where the turtle is

with where it was in order to answer the FINISHED? question. The Logo

command YCOR is used to find where the turtle is. A variable called "OLDY

is used to keep track of where it was.

TO FINISHED?

IF AND (YCOR > 0) (:OLDY < 0) [OUTPUT "TRUE]

MAKE "OLDY YCOR

OUTPUT "FALSE

END

nrmu

Animating the Turtle: Building a Racetrack Game / 249

The first line checks to see if the finishing condition is true. The

Logo command AND checks to see if both of its inputs, (YCOR > 0) and

(:OLDY < 0), are true. If they are, FINISHED? outputs "TRUE. If not. Logo

makes "OLDY equal to the present YCOR and outputs "FALSE. If the an¬

swer to FINISHED? is "TRUE, the FINISH message is printed and the game

stops.

TO FINISH

PRINT [YOU CROSSED THE FINISH LINE]

PRINT SENTENCE [WITH A TIME OF] TIME

END

People often get confused about the STOP commands in both condi¬

tional lines of RACECAR. The STOP commands are there to stop the

RACECAR procedure if either FINISHED? or CRASHED? has a true an¬

swer. If you leave them out or put STOP commands into the FINISH or

CRASH procedures, those procedures will stop but RACECAR won’t, even

though all of the conditions for ending the race are satisfied.

Another way to make RACECAR stop is to put the Logo command

THROW 'TOPLEVEL at the end of the FINISH and CRASH procedures.

THROW 'TOPLEVEL tells the computer to make everything stop. It’s like

applying an emergency brake. It’s tempting to use in a case like this, but

it’s not necessarily a good programming idea, because it could make it hard¬

er to improve the game later.

COMMAND, the next-to-last subprocedure of RACECAR, is just about

the same as it was before.

TO COMMAND

MAKE "COM READKEY

IF :COM = " [STOP]
IF :COM = "F [MAKE "DISTANCE iDISTANCE + 5 STOP]

IF :COM = "S [MAKE "DISTANCE :DISTANCE - 5 STOP]

IF :COM = "R [RIGHT 30 STOP]

IF :COM = "L [LEFT 30 STOP]

END

RACECAR’s last subprocedure is another RACECAR procedure which

keeps the whole process going with an increased time input.

Now let’s look back at the first two subprocedures of RACE,

DRAWTRACK and SETSTART:

TO DRAWTRACK

CLEARSCREEN

HIDETURTLE

CCIRCLE 50

CCIRCLE 70

LEFT 90

PENUP FORWARD 50

250 / Animating the Turtle: Building a Racetrack Game

HELK/ti HUfT

Section 12.6.
Turtle RACE Variations

PENDOWN FORWARD 20

PENUP BACK 70

RIGHT 90

END

TO SETSTART

PENUP SETPOS [-60 0]

SETHEADING 0

FORWARD 1 SHOWTURTLE

MAKE "OLDY1

MAKE "DISTANCE 0

END

You should be able to figure out what these procedures do without

much difficulty. The two CCIRCLE procedures in DRAWTRACK draw cir¬

cles that have their centers at the center of the screen. SETSTART moves

the turtle to its starting place, makes the starting value of "OLDY bigger

than zero, and gives the turtle a starting speed of zero by making

"DISTANCE 0.

This project is deceptively simple. The whole process of tracking the turtle’s position can
get very complex if any but the simplest shapes are used. That’s why this game uses a
circular track with the center of both circles at the origin and a horizontal finish line with a Y-
coordinate of zero.

In principle, it’s possible to have any kind of track and have the computer calculate
whether the turtle is on or off it at any time, it would be a tricky problem for a high school or
college student to determine the correct formulas for anything more than the simplest kind of
track. (I’ll give some challenging examples that are just a little harder than this one in the next
section.)

Then there’s another problem. If the calculations get complicated and the computer has
to check a lot of possible positions each time, the process can slow down to the point where
it isn’t much fun anymore. Those fancy arcade games in which everything happens so fast are
programmed in unreadable machine language by professional programmers. In making
programs so much easier to understand, Logo must sacrifice speed. Therefore it’s necessary
to choose the parameters very carefully in a project like this.

The critical role for a teacher is helping the learner focus on a problem he or she can
solve. I’ve seen a lot of people get frustrated to the point of wanting to quit after setting
themselves a problem that’s just a little too complex (like racing a turtle around a
geometrically complex track). If you can help someone learn to simplify a complex problem
into a doable one, you’ve taught them one oHife’s most important skills! Once you can solve
a problem in its simplest form, it may be possible to add some interesting complexities later.
I’ll suggest some of these in the next section.

Meanwhile, if someone is determined to drive the turtle around complex racetracks and
mazes, it’s best to encourage them not to try to make the computer keep track of things.
After enjoying the pleasures that come with exploring complex shapes and motions for a
while, he or she may be ready to tackle a “simpler” problem.

Now that you’ve got the basic idea of how the RACE procedure works,

ni suggest a few frills. You’ll probably have many more ideas yourself. I

won’t tell you everything about how to make them work, just make some

suggestions the way I did for changing the SHOOT game in Chapter 10.

1. Provide instructions. Just decide what the printed instructions should

be and add an INSTRUCTIONS procedure to RACE. Remember that

only a first-time user will need instructions, so it would be nice to let

the user choose whether to read them.

Animating the Turtle: Building a Racetrack Game / 2

2. Change the messages printed by CRASH and FINISH to make them

more interesting. This will involve changing those two procedures.

3. Keep track of the fastest time as the game is played. The faster your

time the lower your score.

It would be nice if the computer remembered the lowest score you

made every time you played the game. This might make the game more

challenging for some players. To do this you need a new variable called

"LOWSCORE. Then add a procedure to FINISH after it prints the

score.

TO COMPARESCORES

IF (TIME < :LOWSCORE) [MAKE "LOWSCORE TIME]

(PRINT SENTENCE [THE FASTEST TIME FOR THE GAME IS]

[iLOWSCORE

END

There’s one more thing you have to do—initialize "LOWSCORE

the very first time you play the game. One good way to do this is with

a SETSCORE procedure.

TO SETSCORE

MAKE "LOWSCORE 500

SAVE "RACE

ERASE "SETSCORE

END

Choose a large number so that the first winning score is bound to

be lower. Notice that the procedure saves the "RACE file with the val¬

ue of "LOWSCORE in it, then erases itself. You only need to use it

once. If you want to save the new low score each time, save "RACE af¬

ter you are all finished playing the game. If not, every time you read

the file, it will start with a “low score” of 500. Remember to use

SETSCORE by itself, the first time you play.

4. Make something “interesting” happen when the turtle crashes or fin¬

ishes. Add an EXPLODE procedure to CRASH or a FLAGWAVING pro¬

cedure to FINISH. Watch out though. If you make the explosion too in¬

teresting the player may never want to finish the game properly.

5. Make the track width variable. By making the track narrower you

make the game harder. By making it wider, you make the game easier.

You can give the user a choice of a hard, medium, or easy game, just

as suggested for the SHOOT game. Or you can let the user choose the

width by asking a question and using the command MAKE "WIDTH

READNUMBER. (READNUMBER is a tool procedure. Load the

"READNUMBER file from the LWAL Procedures Disk or copy it from

Appendix I.)
If you vary the width, you have to change the command in

CRASHED? that checks to see if the turtle has crossed the outside of

the track. You will also have to change the turtle’s starting position in

SETSTART if you want the turtle to start in the center of the track.

6. Change the shape of the track. This is the hardest variation because it

can get very tricky to check whether the turtle is on or off the track.

J

252 / Animating the Turtle: Building a Racetrack Game

There are a few fairly simple changes you can make that will add vari¬

ety to the game. Remember that if you change the procedures that

draw the track, you may have to change the point in SETSTART where

the turtle starts.

• Track variation #1; Make the two circles have dififereht centers.

Figure 12.8: A racetrack with uneven width.

You can do this by changing DRAWTRACK so that the two circles start

in different places. Then be sure to change CRASHED? so that Logo checks

the distance to the center of each circle. Instead of DISTANCE [0 0], use

the actual X and Y coordinates of the center of each circle as inputs to

DISTANCE.

• Track variation #2: Make the track a rectangular box.

A set of tool procedures called DRAWBOX, INBOX?, and OUTBOX?

can be used to draw rectangular boxes and check whether the turtle is in-

Animating the Turtle: Building a Racetrack Game 253

side or outside of a rectangular racetrack. Load them from a file called

"BOXES on the LWAL Procedures Disk or copy them from Appendix I.

DRAWBOX, INBOX?, and OUTBOX? need four inputs giving the X- and Y-

coordinates of diagonally opposite corners of a box. If the opposite corners

of the inside box are labeled A and B and those of the outside box are la¬

beled C and D, then the coordinates of those points could be called

XA,YA, XB,YB, XC,YC and XD,YD. A new version of DRAWTRACK is

needed to create names for all eight variables and use those names to draw

two boxes. INBOX? and OUTBOX? use those same values as inputs to the

CRASHED? procedure.

XD,YD

XB.YB

XA.YA

XC.YC

Figure 12.10: A rectangular racetrack is defined by the coordinates of the corners of the

track.

TO DRAWTRACK

MAKE "XA -40 MAKE "YA -40

MAKE "XB 60 MAKE "YB 80

MAKE "XC -100 MAKE "YC -80

MAKE "XD 90 MAKE "YD 90

DRAWBOX :XA :YA :XB :YB

DRAWBOX :XC :YC :XD :YD

SETPOS SENTENCE :XA 0

PENDOWN SETX :XC

END

TO CRASHED?

IF INBOX? :XA :YA :XB :YB [OUTPUT 'TRUE]

IF OUTBOX? :XC :YC :XD :YD [OUTPUT "TRUE]

OUTPUT "FALSE

END

The first line of SETSTART will also have to be changed to:

PENUP SETX (:XA + :XC) / 2

All the other procedures would remain the same.

254 / Animating the Turtle: Building a Racetrack Game

mnids MMT

• Track variation #3. Design an oval track.

Figure 12.11: An oval track.

When you really understand how rectangular and circular tracks work,

you should be able to work out procedures for this one too. This oval shape

combines a rectangle with a semicircle, but I won’t say any more about it.

These last few projects provide a really good opportunity to help someone understand
how coordinate geometry works. There are few shortcuts. To help someone do these projects
you have to be willing to patiently explain X- and Y-coordinates, positive and negative
numbers, and the meaning of the concepts “greater than” and “less than” for negative
numbers.

I don’t pretend that I’ve given enough information here to explain these things. If you
need to know more, a good junior high or high school algebra textbook will probably be
helpful, or a math teacher would be delighted to help! Don’t be afraid to let somebody
explore these concepts for a while and then give up. You could always come back to it in a
year or two. Some of these ideas may become much clearer as a learner gains more
mathematical sophistication in other ways.

If this is a “cop out,’’ so be it. I never promised that everybody would be able to do
everything—even everything in this book.

I

I

j

CHAPTER 13

New commands used: none
LWAL Procedures Disk files used: "POET, "PICKRANDOM, "READNUMBER

New tool procedures used:

Tool Procedure

PICKRANDOM

Examples

PRINT PICKRANDOM [HOUSE BOY CAT

MILK]

Meet the Poet

H ere’s a poem I just wrote:

One misty evening

A firefly glitters over the dark meadow

Soft summer twilight

Now here’s a poem my computer just wrote:

The empty river

A sunset floats near each dark rain

Delicate still butterfly

Who do you think wrote this one?

Every swirling forest

A firefly murmurs over the wild brook

Misty frosty night

What does it mean to “write a poem”? When I wrote the first poem, I

had a certain pattern in mind, and certain words that I thought would fit. I

also wanted to capture a special mood and feeling. I was thinking of the

sense of beauty and feeling of contentment I had while taking a walk near

my home in New Hampshire on a summer evening.

What do you think the computer “had in mind” when it “wrote” the

second and third poems? Does a computer have a “mind”? Can it “have

something in mind”? When I see that a computer can produce a poem, it

makes me stop and think just a little.
You and I know that the computer was just following a procedure. The

procedure tells it to select certain types of words according to a fixed pat¬

tern. It selects the words from several long lists of different types of words:

nouns, verbs, adjectives, etc. I guess there’s no need to think of the com¬

puter as having been “creative.” If anyone was creative, it was probably

the programmer who told the computer what pattern to choose, or the per¬

son who supplied it with its lists of words.
But wasn’t I doing the same thing when I wrote my poem? I was fol¬

lowing a procedure, too. The only difference was that I had a much larger

choice of patterns and a bigger list of words in my head from which to

choose. In fact, every time I write something I’m following some kind of

pattern—English grammar is a definite pattern—and trying to choose the

best words. Some writers use a thesaurus to help them choose words. How

is that different from what the computer was doing? Suppose the computer

had been given a much more complex set of patterns, a greater variety of

words and types of words, and some rules for choosing among those words

and patterns. Then would it have been doing the same thing I was when I

wrote my poem?
I would still say, “Of course not!” My poem had meaning, it was

258 / Meet the Poet

Section 13.1.
Sentences

nrmu

based on feelings and experiences that I remember. No matter how com¬

plex a pattern the computer is given, it can’t have a meaning or feelings, or

remember an experience. Or can it? I do believe that a very clever pro¬

grammer could make a computer program complicated enough to write po¬

ems that would seem so “human” that a poetry expert might have difficulty
telling the difference.

This chapter won’t go that far, but I will show you some ways that you

can use Logo to explore word patterns just as you used it to explore geo¬

metric patterns. By trying to make Logo imitate some simple language pat¬

terns, you might learn something about human language patterns.

Think about what makes a human being human as you work through

this chapter. Thinking about a computer as being “almost human” seems

like science fiction. But if people start using computers to write poems and

stories, we may have trouble telling the difference between the “science”
and the “fiction.”

In this section we’ll explore some sentence patterns that can be created

using Logo procedures. First you’ll need to load the file "PICKRANDOM

from the LWAL Procedures Disk or copy PICKRANDOM and its subproce¬

dure PICK from Appendix I. Now let’s look at some very simple sentence

patterns and see what kinds of words we’re going to need. Here are some

simple English sentences that all follow the same pattern;

The rabbit runs.

A girl hops.

A computer computes.

The pattern can be described this way: article, noun, verb. Articles are

words that help identify nouns, like a, an, the, this, or that. Nouns are

words that identify persons, places, or things, like house, book, baseball

player, boy, and rabbit. Verbs are action words—things something does—

like runs, jumps, thinks, or computes.

This Logo program creates simple sentences at random:

TO SENTENCE1

OUTPUT (SENTENCE ARTICLE NOUN VERB)

END

When you use SENTENCE with more than two inputs (as in the proce¬

dure SENTENCED, always put parentheses around SENTENCE and all its

inputs—not around the inputs by themselves. SENTENCE without paren¬
theses can have only two inputs.

SENTENCE is a Logo command that combines words and lists to make

a bigger list. (See Chapter 9 for more information about words and lists.)

1
Meet the Poet / 259

ARTICLE, NOUN, and VERB are Logo procedures that choose words ran¬

domly from different word lists.

TO ARTICLE

OUTPUT PICKRANDOM :ARTICLELIST

END

TO NOUN

OUTPUT PICKRANDOM iNOUNLIST

END

TO VERB

OUTPUT PICKRANDOM :VERBLIST

END

PICKRANDOM is a tool procedure that outputs a random element from

its input list. Now ail we need are some lists.

MAKE "ARTICLELIST [A THE ONE EACH]

MAKE "NOUNLIST [BOY GIRL RABBIT KANGAROO HOUSE

COMPUTER BICYCLE REFRIGERATOR]

MAKE "VERBLIST [GOES RUNS HOPS FLIES JUMPS PLAYS

CATCHES SWIMS SLEEPS KISSES]

Let’s try it.

PRINT SENTENCE1

A COMPUTER SWIMS

Again:

PRINT SENTENCE1

THE REFRIGERATOR FLIES

Well, you can see already that there’s more to human language than

patterns. Both of those are “proper” English sentences in structure, but

they sure don’t make sense. Let’s forget about making sense for a while

and try a few more.

REPEAT 5 [PRINT SENTENCE1]

EACH BOY FLIES
THE BICYCLE RUNS
A KANGAROO KISSES
ONE REFRIGERATOR KISSES
THE BICYCLE HOPS

Let’s mix things up a little more by adding some more kinds of words

and trying some different sentence patterns. Remember, we’re still not wor¬

ried about making sense.

TO ADJECTIVE

OUTPUT PICKRANDOM :ADJECTIVELIST

END

TO ADVERB

OUTPUT PICKRANDOM :ADVERBLIST

END

Now we need some new lists. Adjectives are words that describe

nouns—that is, they tell what things are like. Adverbs describe verbs—they

tell how things are done.

I MAKE "ADJECTIVELIST [NICE QUIET RICH POOR HAPPY SAD UGLY

1 BEAUTIFUL FAST SLOW]

I MAKE "ADVERBLIST [QUICKLY SLOWLY HAPPILY SADLY

1 PRECISELY QUIETLY LOUDLY SOFTLY]

Of course you can add your own words to these lists. I’m sure yours

will be much more interesting than mine. Choosing interesting words for

something like this is very hard for me.

Now let’s invent some sentence patterns. Try some that you think will

be proper English and others that you’re not sure about. Even improper

sentence patterns might be fun to try. With five types of words, there are

dozens of possible sentence patterns if you use some words more than once

and sometimes connect two phrases together. Here are a few ideas for pat¬

terns. I’m sure you can think of a lot more. Try to make at least a dozen.

TO SENTENCE2

OUTPUT (SENTENCE ARTICLE ADJECTIVE NOUN VERB ADVERB)

END

PRINT SENTENCE2

ONE QUIET RABBIT CATCHES SLOWLY

Is it a proper sentence if we reverse it?

TO SENTENCES

OUTPUT (SENTENCE ADVERB VERB NOUN ADJECTIVE ARTICLE)

END

PRINT SENTENCES

PRECISELY SLEEPS RABBIT SAD ONE

How about putting the procedures in alphabetical order?

TO SENTENCE4

OUTPUT (SENTENCE ADJECTIVE ADVERB ARTICLE NOUN VERB)

END

PRINT SENTENCE4

NICE PRECISELY EACH REFRIGERATOR KISSES

Or in a random order?

TO SENTENCES

OUTUT (SENTENCE ARTICLE ADVERB NOUN ADJECTIVE VERB)

END

PRINT SENTENCES

A SLOWLY GIRL BEAUTIFUL PLAYS

How about using more than one of the same kind of word?

TO SENTENCES

I OUTPUT (SENTENCE ADVERB ARTICLE ADJECTIVE ADJECTIVE

1 ADJECTIVE NOUN VERB)

END

Meet the Poet / 261

PRINT SENTENCE6

SADLY ONE QUIET POOR SLOW GIRL PLAYS

Here’s a neat trick. SENTENCE2 and SENTENCES are the reverse of

each other. What would it be like to combine them?

TO SENTENCE?

OUTPUT (SENTENCE SENTENCES [AND] SENTENCES)

END

PRINT SENTENCE?

THE RICH GIRL KISSES PRECISELY AND SOFTLY CATCHES BOY
NICE EACH

Now that almost sounds like a poeml

Suppose you make twelve different sentence patterns. Here’s a proce¬

dure that will choose randomly from among the twelve patterns. (The first

line of the procedure adds 1 to RANDOM 12 because RANDOM 12 outputs

a number between 0 and 11 and the procedure needs a number between 1

and 12.)

TO SENTENCES

MAKE "NUMBER (1 + RANDOM 12)

IF :NUMBER = 1 [PRINT SENTENCE)]

IF :NUMBER = 2 [PRINT SENTENCE2]

IF :NUMBER = 12 [PRINT SENTENCE12]

SENTENCES

END

SENTENCES

SLOWLY JUMPS GIRL SLOW THE
EACH QUIET COMPUTER PLAYS LOUDLY
ONE RICH RABBIT KISSES PRECISELY
HAPPILY THE FAST SLOW QUIET BOY SLEEPS
EACH SLOW KANGAROO FLIES HAPPILY
A HOUSE SWIMS
ONE BEAUTIFUL RABBIT HOPS SOFTLY
THE SLOWLY GIRL HAPPY SWIMS
THE RICH REFRIGERATOR GOES HAPPILY AND PRECISELY FLIES

GIRL QUIET A
SAD QUIETLY A RABBIT FLIES

If any of these sentence patterns really offend you, take them out of the

SENTENCES procedure and replace them by ones you like. See if you can

decide which sentences are proper English and which ones are improper.

Which ones are proper but boring? Which are improper but interesting?

Make lists of proper and improper patterns, interesting and uninteresting

262 / Meet the Poet

Section 13.2.
Making Sentences Make
Sense

patterns. Compare your lists with someone else’s to see if you have differ¬

ent ideas.

Making everything random in a group of sentences may be fun for a

while, but I get bored rather quickly. How can we create sentences that

make more sense? One way is to choose sets of words that go together. Se¬

lect a whole bunch of nouns, verbs, adjectives, and other types of words

that all fit together in some way. For example, make them all about sports,

animals, nature, science fiction. If you choose interesting sets of words,

your sentences will start to get more interesting.

I decided to make a collection of nature words for the POET program.

I picked some of them to make a new wordlist for sentences.

MAKE "NOUNLIST [WATERFALL RIVER BREEZE MOON RAIN WIND

SEA MORNING SNOW LAKE SUNSET SHADOW PINE LEAF

GLITTER DAWN FOREST]

MAKE "VERBLIST [SHAKES DRIFTS [IS HIDDEN] SLEEPS CREEPS

MURMURS FLIES FLUTTERS [HAS FALLEN]]

MAKE "ADJECTIVELIST [AUTUMN HIDDEN BUBBLING BOILING

SWIRLING GREEN BITTER MISTY SILENT EMPTY]

MAKE "ADVERBLIST [QUICKLY SLOWLY HAPPILY SADLY QUIETLY

LOUDLY SOFTLY]

MAKE "ARTICLELIST [A THE EACH EVERY]

Notice that some of these lists have short lists—phrases like

[IS HIDDEN]—inside them.

Now let’s try SENTENCES.

SENTENCES
LOUDLY THE SWIRLING MISTY SWIRLING SEA SLEEPS
SOFTLY THE BUBBLING EMPTY AUTUMN RAIN MURMURS
SLOWLY DRIFTS RIVER AUTUMN EVERY
ONE QUIETLY PINE GREEN CREEPS
HAPPILY DRIFTS MORNING BUBBLING EACH
EACH BITTER LAKE SHAKES QUICKLY
EVERY BITTER SUNSET DRIFTS QUIETLY AND SLOWLY HAS

FALLEN WIND BITTER ONE
QUIETLY THE HIDDEN HIDDEN HIDDEN RAIN FLUTTERS
SWIRLING QUICKLY THE FOREST DRIFTS
EVERY BUBBLING SHADOW SLEEPS HAPPILY

These sentences are made from the same set of sentence patterns we

had before. But because the words go well together, it almost seems like

poetry. And if we choose our sentence patterns carefully, maybe it will be

poetry.

Meet the Poet / 263

exnmjm

Before going on to look at the poetry procedures, try to choose some
interesting sets of words of your own. It might even be more fun to do
this with someone else. When brainstorming, two or three heads usually
are better than one. Use words that relate to one of your special
interests—animals, sports, computers, horror movies, people, politics,
astronomy, . . . whatever.

POET is created by choosing interesting words and interesting sentence
patterns. The complete set of POET procedures and wordlists can be copied
from Appendix I or loaded from a file called "POET on the LWAL Proce¬
dures Disk.

TO POET
PRINT LINE1
PRINT LINE2
PRINT LINES
END

Now, let’s try POET.

POET
EACH LIMPID POND
ONE BIRD RACES OVER THE FROSTY FIR
WILD BLUE MOON

Can you detect the pattern?

TO LINE1
OUTPUT (SENTENCE ARTICLE ADJECTIVE NOUN)
END

TO LINE2

OUTPUT (SENTENCE ARTICLE NOUN VERB PREPOSITION ARTICLE
ADJECTIVE NOUN)

END

TO LINES
OUTPUT (SENTENCE ADJECTIVE ADJECTIVE NOUN)
END

The only new word procedure is PREPOSITION, which needs a list of
prepositions to go with it. Prepositions are words that indicate relationship,
location, or direction.

TO PREPOSITION
OUTPUT PICKRANDOM :PREPOSITIONLIST
END

MAKE "PREPOSITIONLIST [ON IN OFF [OUT OF] UNDER OVER NEAR
BENEATH OVER AROUND BELOW ABOVE]

Section 13.3.
POET

264 / Meet the Poet

The noun, verb, and adjective lists used by POET are much longer than
the ones I used in Section 13.2. If you want to, you can copy the entire set

of lists from Appendix I.
The POET file also contains a superprocedure called POEMS that asks

how many poems you want and prints that number of poems for you.

TO POEMS
CLEARTEXT
PRINT [HOW MANY POEMS DO YOU WANT?]

MAKE "N READNUMBER
CLEARTEXT PRINT [] PRINT []
PRINT SENTENCE ;N [POEMS BY THE LOGO POET]

PRINT []
REPEAT ;N [POET PRINT []]

END

POEMS uses READNUMBER, a tool procedure. Load the file called
"READNUMBER from the LWAL Procedures Disk or copy it from Appen¬

dix I.

POEMS
HOW MANY POEMS DO YOU WANT?

3

3 POEMS BY THE LOGO POET

EVERY BOILING DUST
EVERY RIVER HAS STOPPED ON THE BLUE NIGHT

MISTY SPARKLING CROW

ONE EMPTY MORNING
EVERY CROW MURMURS OVER ONE BLUE SNOW

BOILING COLD SHADOW

THE FROSTY RAVEN
THE LEAF HAS PASSED ON THE AZURE NIGHT

BUBBLING LIMPID MORNING

iXfUfumm

Now see if you can make up a poetry procedure of your own. Try dif¬
ferent variations on the lines, choose different words, or use different num¬
bers of lines. One interesting way to make up POET procedures is to study
some real poems that you enjoy reading and try to figure out their patterns.

Meet the Poet / 265

By the way, who would you say is the author of the poems written by
POET? Is it the computer, or is it the person who programmed the comput¬
er? Or is it the real poet whose idea was used as a model for the POET pro¬
cedure? Perhaps these poems have three authors: the poet, the program¬
mer, and the computer. What do you think?

Section 13.4.
More Explorations with
Language

In this section I’ll suggest a few more things you might try using the
ideas I’ve shown you in this chapter.

Take a famous quotation and use that as a pattern. Keep most of the
line so that your new lines sound enough like the original to be funny.
Here’s a sample from Shakespeare’s Hamlet:

Exnmrm

“To be or not to be, that is the question.’’

Here’s a Logo Procedure to make silly sentences out of this:

TO HAMLET
MAKE "VERB1 VERB

OUTPUT (SENTENCE [TO] ;VERB1 [OR NOT TO] :VERB1 [THAT IS
THE] NOUN)

END

Now try it.

PRINT HAMLET
TO SWIM OR NOT TO SWIM THAT IS THE BUTTERFLY

The first line of HAMLET gave the name "VERB1 to the output from the
VERB procedure so that we could use the same word twice. If we had used
the VERB procedure directly in the sentence, as in this version,

TO HAMLET1

OUTPUT (SENTENCE [TO] VERB [OR NOT TO] VERB [THAT IS THE]
NOUN)

END

we would get this kind of result:

PRINT HAMLET1
TO MURMUR OR NOT TO JUMP THAT IS THE REFRIGERATOR

Use a short poem in the same way. Here’s a famous poem by Carl
Sandburg:

The fog comes
on little cat feet.

It sits looking
over harbor and city
on silent haunches
and then moves on.

First you have to decide which words to keep the same and which to
let the computer choose. This procedure might work;

TO FOG
PRINT (SENTENCE [THE] NOUN [COMES])
PRINT (SENTENCE [ON] ADJECTIVE ANIMAL [FEET.])

PRINT []
PRINT (SENTENCE [IT SITS] VERSING)
PRINT (SENTENCE [OVER] NOUN [AND] NOUN)
PRINT (SENTENCE [ON] ADJECTIVE [HAUNCHES])
PRINT (SENTENCE [AND THEN] VERB [ON.])

END

VERSING ouputs a verb with an ing ending, and ANIMAL outputs an

animal name. Here’s one result:

FOG
THE BASEBALL COMES
ON BEAUTIFUL ROOSTER FEET.

IT SITS SINGING
OVER BICYCLE AND HOSPITAL
ON BOILING HAUNCHES
AND THEN FLUTTERS ON.

You can probably do better with more interesting choices of words.
To carry this silliness to the limit, take an entire short story or a folk

tale like Little Red Riding Hood. Select certain key words for the computer
to choose and leave all the others the same. Part of the story might come

out like this;

WHY GRANDMOTHER, WHAT JUICY FRISBEES YOU HAVE!
THE BETTER TO DRIVE YOU WITH MY DEAR.

If this kind of exploration with language seems silly to you, make it as
serious as you like by choosing serious patterns and selecting the best
words you can to fit them. The limit of this kind of activity is really your
own patience and creativity—and the memory limits of your computer.

Some computer scientists with big computers are programming them to
turn out poems, mystery stories, and other kinds of “literary works.” Will
there ever be a time when you won’t be able to tell the difference between
something written by a computer and something written by a person?
Someday you may have a chance to try to answer that question for your¬

self.

1

I

268 / How the Special Tool Procedures Work

CHAPTER 14

Command
Short
Form Examples With Inputs

PEN PRINT PEN
SHOWNP PRINT SHOWNP
SETPEN SETPEN 'TRUE
OR IF OR (XCOR > 0) (YCOR < 0) [STOP]
SORT PRINT SORT 100
KEYP IF KEYP OUTPUT READCHAR
READCHAR RC MAKE "KEY READCHAR
COUNT PRINT COUNT [A B C D]
NOT IF NOT (XCOR > 0) [STOP]
NUMBERP f IF (NOT NUMBERP ANSWER) [OUTPUT

•DEPOSIT
1 READNUMBER]

•DEPOSIT 53008 7
CHAR PRINT CHAR 17

LWAL Procedures Disk files used: "CIRCLES, "CCIRCLE, "BOXES,
"DISTANCE, "READKEY, "PICKRANDOM, "READNUMBER,
"PRINTSCREEN.S, "PRINTSCREEN.G

New tool procedures used:

Tool Procedure Examples

PICK PRINT PICK 3 [A B C D]

How the Special Tool Procedures Work / 269

14 How the Special Tool
Procedures Work

1

WLn/& nmr

This entire chapter should be labeled “helper’s hint.” However, anyone
who has read the entire book this far is more than ready to be a “help¬

er” and should be able to understand most of this chapter fairly easily.
Some of the tool procedures are quite simple compared to some of the com¬

plex projects of the last few chapters.
If you haven’t read the whole book and just want to know how one

particular tool procedure works, you can find out by reading the particular
section you want very carefully. But watch out! Not everything in this

chapter is going to be easy.
Why tool procedures! Why single out these special few Logo proce¬

dures, call them tools, and not explain how they work until the end of the
book? Why not explain them when they are first introduced? Well, certain
procedures seem to make other things much easier. These are the ones I
think of as tools. People should be able to use tools to build and learn with
without having to construct those tools themselves. You wouldn’t want to
have to know how to make a hammer before you learned to use one, would

you? I feel the same way about Logo tools.

matm im

Tool procedures are one of the most important ways that Logo facili¬
tates learning. As a teacher, I can use Logo to create different kinds of
learning environments for different students. A procedure that I write can
be used by a learner just as if it were another command in the language. A
teacher writing Logo procedures for students is creating a language for
learning, just as an artist creating turtle drawing procedures might be creat¬
ing a language for artistic expression. And the language that a teacher cre¬
ates merges into a learner’s own, personally created language as the learner
becomes able to understand procedures that were originally presented as

“primitives.”
Let me give an example. The first tools used were circle procedures,

way back in Chapter 2. They were used to create designs before procedures
were even introduced. Some teachers prefer to show students how to make
the turtle draw circles and how to write procedures before they are able to
make designs with circles. I prefer to do things the other way around. I give
people circle procedures at the beginning. Long before they know how to
write procedures with inputs or understand the geometry of circles, people
can make exciting circle designs and gain a sense of control over the com¬
puter. Later, I can explain some fine points of Logo programming and teach
a little geometry that probably would have been too complicated to under¬

stand at first.

i
j
I
I
!

!

270 / How the Special Tool Procedures Work

Section 14.1.
Circles and Arcs

There’s also another reason for having tool procedures. When the same

little procedure is used over and over again—while one is trying to accom¬

plish a number of different projects—it’s nice to save that procedure sepa¬

rately so that it’s handy when you need it again. I hope you have been (or

will be) making and saving some of your own tools as you go along.

So you might ask, why bother to explain these little procedures at all?

Why not let people figure them out for themselves or just use them without

understanding them? The main reason is that it gives me an opportunity for

one last set of explanations, one more chance to show you some of the fine

points of Logo. These fine points will help you go on to create a lot more

projects and keep learning with Logo on your own. So here goes. . . .

The circle and arc procedures RCIRCLE, LCIRCLE, RARC, and LARC
were introduced in Chapter 2. They are built from the subprocedures RCP
and LCP. Each of these procedures requires one input, the radius of the cir¬

cle being drawn. Right and left circle procedures are the same except for

the direction of turn.

Any Logo “circle” is really a polygon. In this case I decided that a 36-

sided polygon was a close visual approximation of a circle. The basic build¬

ing block, RCP or LCP, turns the turtle 10 degrees so that the total turn for

a full circle is 360 degrees.

TO RCP :R
RIGHT 5
FORWARD :R * 3.14159 / 18
RIGHT 5
END

There are two interesting questions about this procedure. Where did

the formula :R * 3.14159 / 18 come from? And why did I make the turtle

turn RIGHT 5 twice instead of RIGHT 10 once?

The number 3.14159 is an approximation of the geometric constant tt

(pi), the ratio between the circumference of a circle and its diameter. In Fig¬

ure 14.1, the circumference is labeled C, the diameter D, and the radius, R.

The length of 1/36 of the circumference is labeled S; this is the turtle step

size needed for a 36-sided polygon.

How the Special Tool Procedures Work / 271

c

Figure 14.1: Each “right-circle-piece” is 10/360 or 1/36 of the entire circumference.

The mathematical equation relating the circumference to the diameter

is:

C = 3.14159 X D

If you use twice the radius in place of the diameter, the equation is

C = 3.14159 X R X 2

To find the length of 1/36 of the circumference, divide both sides of the

equation by 36.

S = C / 36 = 3.14159 x R x 2 / 36

If you replace 2/36 by 1/18, you will have the formula I used for the forward

step in RCP and LCP.

S = 3.14159 X R / 18

Written as a Logo command, this becomes

FORWARD :R * (3.14159) / 18

I left the formula expressed as :R * 3.14159 /18 instead of :R * 0.17453

so that people who know about tt can see where the expression came from.

RCP uses RIGHT 5 twice rather than RIGHT 10 once so that the center

of the “circle” is located at a 90 degree angle from the direction in which

the turtle started. If I had used RIGHT 10, the center of the circle would be

slightly above the point at which the turtle started. Since the difference is

272 / How the Special Tool Procedures Work

Section 14.2.
CCIRCLE

very slight for a 36-sided polygon, I will illustrate what happens with a 6-

sided polygon. Compare the results of these two turtle commands:

REPEAT 6 [FORWARD 50 RIGHT 60]

and

REPEAT 6 [RIGHT 30 FORWARD 50 RIGHT 30]

Figure 14.2: Turning before and after each forward step keeps a 6-sided polygon level.

The actual difference for a 36-sided polygon is much harder to detect,

but even such a slight difference would make it difficult to complete many

of the circle and arc designs suggested in this book. Compare:

REPEAT 36 [FORWARD 10 RIGHT 10]

with

REPEAT 36 [RIGHT 5 FORWARD 10 RIGHT 5]

Figure 14.3: With 36-sided polygons, the effect is similar but harder to notice.

RARC and LARC each make quarter-circle arcs by repeating RCP 9

times. Quarter circles are useful for many designs, including rounding the

corner of a box and building semicircles. You can make other arcs by re¬

peating RCP or LOP more or less than 9 times.

CCIRCLE draws a circle which starts at its own center. It is used for

activities where the center is determined in advance and it is important to

know the distance from that center to the edge of the circle—for example,

in the target game of Chapter 10 or the racetrack game of Chapter 12.

How the Special Tool Procedures Work / 273

CCIRCLE also uses the subprocedure RCP repeated 36 times. Here is the

main part of the procedure:

HIDETURTLE
PENUP FORWARD :R
RIGHT 90
PENDOWN REPEAT 36 [RCP :R]

LEFT 90
PENUP BACK 90

A i

There is one fine point in the CCIRCLE procedure. If the turtle’s pen
was down at the start, CCIRCLE puts it back down when it finishes. If the
turtle was visible originally, it is shown again at the end. This is accom¬
plished with the commands PEN and SHOWNP, which I have not yet men¬
tioned. PEN outputs "TRUE when the turtle’s pen is down and "FALSE
when the pen is up. SHOWNP outputs 'TRUE when the turtle is visible and
"FALSE if it is hidden. Now you should be able to follow the entire

CCIRCLE procedure.

TO CCIRCLE ;R
MAKE "PEN? PEN
MAKE "SHOWN? SHOWNP
HIDETURTLE
PENUP FORWARD :R
RIGHT 90
PENDOWN REPEAT 36 [RCP :R]

LEFT 90
PENUP BACK :R
SETPEN :PEN?
IF :SHOWN? [SHOWTURTLE]

END

274 / How the Special Tool Procedures Work

The first two lines of CCIRCLE gives the names "PEN? and "SHOWN?

to the values output by PEN and, SHOWNP. The last two lines use these

values. If PEN? is 'TRUE, the pen will be put back down. If :SHOWN? is

'TRUE, the turtle will be shown again. Otherwise the pen would be left up

and the turtle would remain hidden.

This is an example of a procedure that returns the turtle to its original

state—not just to its original position and heading, but to its “pen state”

and its “shown state” as well. It illustrates an important idea in computer

programming: keep track of all the starting conditions of a system so that

you can restore those conditions once a particular process is complete.

nmmiKA

Section 14.3. The box tool procedures are designed to be used when it is important

Boxes to know whether the turtle is inside or outside of a box—as in the rectangu¬

lar racetrack variation of RACE in Chapter 12. In this case we use com¬

mands like SETPOS, SETX, and SETY to draw the box in terms of its coor¬

dinates and use the same coordinates to check whether the turtle is in or

out of the box. These procedures are less important than circle procedures,

but since I haven’t used X and Y coordinates in the rest of the book very

much, I thought they would be worth discussing here.

To use the procedure DRAWBOX, INBOX?, and OUTBOX?, you have

to know the X and Y coordinates of two points on the box. The coordinates

of the lower left-hand corner of the box are called X1,Y1. The coordinates

of the upper right-hand corner are called X2,Y2. The box can be anywhere

on the screen, and the coordinates can be positive or negative. Logo com¬

mands SETPOS, SETX, and SETY are used to draw the box. With these

commands, the turtle moves directly from where it is to the point named

without changing anything else. Its heading is totally irrelevant and stays

just as it was. DRAWBOX ends by returning the turtle to its original posi¬
tion with its pen up.

How the Special Tool Procedures Work / 275

Figure 14.5: A rectangular box is defined by the coordinates of its opposite corners.

TO DRAWBOX :X1 ;Y1 :X2 ;Y2

MAKE "PO POS
PENUP SETPOS SENTENCE ;X1 :Y1 PENDOWN

SETX :X2

SETY :Y2

SETX :X1

SETY :Y1
PENUP SETPOS :P0

END

The same coordinates, XI, Yl, X2, and Y2, are used to test whether

the turtle is in or out of the box. If the turtle is in the box, its X coordinate

and its Y coordinate will both be larger than XI and Yl and smaller than X2

and Y2. That is, all four of those conditions must be true. INBOX? consists

of one long command line.

TO INBOX? :X1 :Y1 ;X2 :Y2

OUTPUT (AND (XCOR > :X1) (YCOR > :Y1)

(XCOR < :X2) (YCOR < :Y2))

END

AND outputs "TRUE only if all of its inputs are 'TRUE. Otherwise it

outputs "FALSE.
The turtle is out of the box if its X or Y coordinate is less than XI or

Yl, or larger than X2 or Y2, that is, if any one of those conditions is true.

OUTBOX? also consists of one long command line:

TO OUTBOX? :X1 :Y1 :X2 :Y2

OUTPUT (OR (XCOR < :X1) (YCOR <:Y1)

(XCOR > :X2) (YCOR > ;Y2))

END

OR outputs 'TRUE if any one of its inputs is 'TRUE. If all of them are

"FALSE it outputs "FALSE. • c
These procedures make a nice example of inclusion and exclusion, ror

those who know mathematical logic, AND is equivalent to the logical opera¬

tor AND and OR is equivalent to the logical operator, OR.
You can use INBOX? and OUTBOX? to tell whether the turtle is in or

276 / How the Special Tool Procedures Work

HTFAU

Section 14.4.
DISTANCE

out of a rectangular region of the screen. There does not need to be a box

drawn on the screen in order to use these procedures. The coordinates of

any two points on the screen can be used to define a rectangular region.

You will probably find it helpful to draw diagrams on paper when you use

these procedures.

DRAWBOX, INBOX?, and OUTBOX? can have positive or negative in¬

puts. If any one of the inputs is negative, be sure there is no space between

the - and the input. Otherwise Logo will try to subtract.

The first two inputs to these procedures must be the X and Y coordi¬

nates of the lower left corner of a box as shown in Figure 14.5. The last two

inputs must be the X and Y coordinates of the upper right corner. If the in¬

puts are incorrect, the procedures may appear to work, but will give incor-
ect results.

The DISTANCE procedure outputs the distance from the turtle to a par¬

ticular point. It can be used to tell whether the turtle is inside or outside of

a particular circle, as in the target or racetrack game. If you know the Py¬

thagorean Theorem you will understand where this procedure comes from:

“The distance between two points is the square root of the sum of the

squares of the sides of a right triangle joining the two points.”

In Figure 14.6, XCOR and YCOR are the turtle’s coordinates and :X1

and :Y1 are the coordinates of the point from which distance is being mea¬
sured.

XCOR.YCOR

XI,Y1

Figure 14.6 DISTANCE uses the Pythagorean Theorem to determine the distance between
the turtle and any point on the screen.

How the Special Tool Procedures Work / 111

Section 14.5.
READKEY

The horizontal distance between the two points (XCOR :X1). The

vertical distance is (YCOR - :Y1). The direct distance is the square root

(SORT) of the sum of the squares of those values.

TO DISTANCE :P1

MAKE "X1 FIRST :P1

MAKE "Y1 LAST :P1

OUTPUT SORT ((XCOR - :X1) * (XCOR - :X1)

+ (YCOR - ;Y1) * (YCOR - :Y1))

END

That’s all there is to it. (The parentheses are necessary!)

READKEY is used to read a single key from the keyboard in the midst

of an ongoing procedure. It uses two Logo primitive commands,

READCHAR and KEY. READCHAR waits for you to type a single character

and then ouputs that character—just as READLIST waits for you to type a

list. KEYP asks if you have typed a character. If you have, it outputs

'TRUE; if not, it outputs "FALSE. READKEY uses these in a tricky combi¬

nation.

TO READKEY

IF KEYP [OUTPUT READCHAR]

OUTPUT"

END

The “English translation” of READKEY is: “If a character has been

typed, output that character as a Logo word. If not, output an empty

word.”
Here’s a funny thing about READKEY. It won’t do anything by itself. It

has to be in some kind of repetitive procedure. First try READKEY by it¬

self. See if you can make it do anything. Then try it in a procedure like this

one:

TO PRINTKEYS

MAKE "LETTER READKEY

IF :LETTER = " [PRINTKEYS]

PRINTLETTER :LETTER

PRINTKEYS

END

TO PRINTLETTER :LETTER

IF :LETTER = " [STOP]
IF :LETTER = "A [PRINT [YOU TYPED A. NOW I CAN STOP]

THROW 'TOPLEVEL]

PRINT SENTENCE [YOU TYPED] :LETTER

END

READKEY is usually used as part of a COMMAND procedure where

each letter makes the procedure do something different.

278 / How the Special Tool Procedures Work

Section 14.6. PICK is a classic example of a recursive Logo procedure with outputs.

PICKRANDOM and PICK This is among the hardest aspects of Logo for many people to understand,

which is why I haven’t dealt with it until the last chapter.

matmim

There are two basic principles to remember in trying to understand this

type of procedure.

1. The procedure must end by outputting something. It outputs back to

the procedure or command that called it. If it calls another procedure

to output something to it, it has to wait for that procedure to output be¬

fore it can go on with its own job.

2. One basic strategy for designing recursive procedures that manipulate

information is to assume you already know how to carry out the proce¬

dure with the butfirst of the object being manipulated. Use what you

assume you have already done to complete something you don’t yet

know how to do. Sound peculiar? It is! But in some very interesting

and important cases, it works very well.

Here are the procedures we are looking at:

TO PICKRANDOM :OBJECT

MAKE "NUMBER RANDOM COUNT :OBJECT

OUTPUT PICK (:NUMBER + 1) :OBJECT

END

TO PICK :NUMBER :OBJECT

IF :NUMBER = 1 [OUTPUT FIRST :OBJECT]

OUTPUT PICK (:NUMBER - 1) (BUTFIRST :OBJECT)

END

First I’ll describe in words what each of these procedures does, then

I’ll try to explain how it does it.

PICK has two inputs, a number and an object. It outputs the /ith ele¬

ment of the word or list (where n is the input number). PICK has the same

effect as the Apple Logo command ITEM.

PICKRANDOM has one input, a word or list object. It outputs a ran¬

dom element from the object.

First, let’s look at the PICK procedure.

TO PICK :NUMBER :OBJECT

IF :NUMBER = 1 [OUTPUT FIRST :OBJECT]

OUTPUT PICK (:NUMBER - 1) (BUTFIRST :OBJECT)

END

PICK is a recursive procedure which cannot stop unless its first input is

1, or it gets a value to OUTPUT from another PICK procedure. As you fol¬

low the example, pretend that all the PICK procedures are numbered. That

way you can keep track of exactly what each one of them is doing.

Let’s see what happens when you give the command

PICK 3 [A B C D]

Logo gives PICK two inputs, the number 3 and the list [ABC D],

How the Special Tool Procedures Work / 279

Figure 14.7a

PICK#1’s number input is not 1, so it goes on to carry out its second

line. This tells it to OUTPUT a value that it gets by calling another PICK

procedure. P1CK#1 gives this new procedure, PlCK#2, a number input of

2, one less than PlCK#Ts original number input, 3. It gives PlCK#2 an ob¬

ject input of [B C D], the BUTFIRST of PlCK#1’s original object input,

[ABC D].

Then PICK#1 waits for a value to output back to Logo.

Figure 14.7b

PlCK#2’s inputs are 2 and [B C D]. Its number input still isn’t 1, so it goes

on to its next line, and calls PlCK#3 with inputs of 1 and [C D]. Then

PlCK#2 waits for a value to output back to PICK#1.

Figure 14.7c

280 / How the Special Tool Procedures Work

PICK#3 has 1 and [C D] as inputs. Its first input is 1, so it outputs the

FIRST elements of its second input, the word "C, back to PICK#2. Then

PICK#3 stops.

Figure 14.7d

PICK#2 gets "C as the value to be output in its second line. It outputs

this back to PICK#1. Then PICK#2 stops.

Figure 14.7e

PICK#1 now gets the value "C, and outputs it back to Logo. Then

PICK#1 stops.

Figure 14.7f

How the Special Tool Procedures Work / 281

Section 14.7.
READNUMBER

Usually, a command like PICK is itself used as input to another com¬

mand, for example, PRINT. Suppose you type:

PRINT PICK 3 [A B C D]

C

Notice that in this case PICK’S final output, the letter C, was the third ele¬

ment of the original list, [ABC D], If PICK’S first input had been 2 or 4, it

would have finally output B or D. If PICK’S first input was larger than the

number of elements in its second input, Logo would eventually complain,

after the second input got chopped down to nothing.

Do you begin to get the idea? If you want to understand even more

about this kind of process, I suggest you read Harold Abelson’s Logo for

the Apple II or Apple Logo, or TI Logo, published by Byte Books. I won’t

say any more about it here.

PICKRANDOM uses the Logo primitive command RANDOM and the

subprocedure PICK to do its job. We’re lucky this time—PICKRANDOM is

not recursive.

TO PICKRANDOM :OBJECT

MAKE "NUMBER RANDOM COUNT :OBJECT

OUTPUT PICK (:NUMBER + 1) :OBJECT

END

Watch it work with an example.

PICKRANDOM [A B C D]

In the first line, COUNT [A B C D] outputs 4, which is used as the in¬

put to RANDOM. RANDOM 4 outputs a number from 0 to 3 (suppose this

time it output 2).
In its second line, PICKRANDOM outputs PICK (2 + 1) [A B C D]. We

already know that PICK 3 [A B C D] outputs C, so in this case we might see

the following result:

PRINT PICKRANDOM [A B C D]

C

If we do it again we have three chances out of four of getting something

different. To see what happens with several tries, try this:

REPEAT 10 [PRINT PICKRANDOM [ABC D]]

READNUMBER is another example of a recursive procedure which out¬

puts. It supplies a command that really could have been part of Logo. The

only Logo command that reads more than one character from the keyboard

is READLIST, which reads and outputs a list typed at the keyboard. A num¬

ber is a special kind of word. Since a word can never be equal to a list, we

have to do something to get a number from the keyboard. Try this se¬

quence:

MAKE "NUMBER READLIST

55

PRINT :NUMBER

55

282 / How the Special Tool Procedures Work

Looks okay so far, but . . .

PRINT (:NUMBER = 55)

FALSE

Actually, :NUMBER is the list [55], and in Logo, the list [55] is not

equal to the number 55. To get a number from [55], we take the first ele¬

ment of the list.

PRINT (FIRST :NUMBER) = 55

TRUE

So the main thing that READNUMBER has to do is output the first ele¬

ment of READLIST.

TO READNUMBER

OUTPUT FIRST READLIST

END

If we knew that every user really would type a number,

READNUMBER could be just this simple. Suppose, however, that the user

makes a mistake and types RETURN. READLIST will output an empty list,

[], and the result of READNUMBER will be the error message

FIRST DOESN’T LIKE [] AS INPUT

To avoid this and to make sure that the user really does type a number.

I’ve used the Logo command NUMBERP to make a fancier version of

READNUMBER

TO READNUMBER

MAKE "NUM1 READLIST

TEST :NUM1 = []

IFTRUE [PRINT [PLEASE TYPE A NUMBER] OUTPUT READNUMBER]

TEST NOT NUMBERP FIRST :NUM1

IFTRUE [PRINT [PLEASE TYPE A NUMBER] OUTPUT READNUMBER]

IFFALSE [OUTPUT FIRST :NUM1]

END

Let’s go through this step by step. Remember the first basic principle

of writing procedures that give outputs: Every time it is called,

READNUMBER must end by outputting something. Now let’s see what this

more complicated version of READNUMBER does.

The first line of READNUMBER gives the name "NUM1 to the list out¬

put by READLIST. READLIST, of course, just outputs whatever the user

types.

Next READNUMBER performs two tests to see if :NUM1 is empty or if

FIRST :NUM1 is not a number. If both tests are false, that is, if :NUM1 is

not empty and FIRST :NUM1 is a number, the procedure goes on to the last

line and outputs FIRST :NUM1. This will happen in most cases that

READNUMBER is used.

If :NUM1 is empty or FIRST :NUM1 not a number, one of the tests is

true. In this case the computer prints "PLEASE TYPE A NUMBER" and out¬

puts a new READNUMBER. That is, it calls another READNUMBER proce¬

dure and waits to output whatever it gets from this new READNUMBER.

This process will keep happening until either a number is typed or the com-

How the Special Tool Procedures Work / 283

raffiXFKt fMA

Section 14.8.
PRINTSCREEN

puter runs out of space in its working memory. When the user does type a

number, that number is output back to the procedure that called it. That

procedure outputs the number back to whatever procedure called it, and so

on, back to the original procedure that called READNUMBER in the first

place. It works much like the PICK procedure we talked about in Section

14.6.
Try just typing RETURN several times:

PRINT READNUMBER

PLEASE TYPE A NUMBER

PLEASE TYPE A NUMBER

PLEASE TYPE A NUMBER

etc.

The same lines will be repeated over and over until you do type a num¬

ber (or press CTRL-G to stop everything). If you type anything else that is

not a number, READNUMBER does the same thing.

PRINT READNUMBER

SEVEN

PLEASE TYPE A NUMBER

7

7

In one way, READNUMBER is simpler than PICK. If the user types a

number as expected, READNUMBER outputs the number right away. Only

if the user makes a mistake is READNUMBER recursive.

I’ve included this fancy version of READNUMBER as an example of a

“user-proof’ procedure—that is, one which offers some protection against

user errors without spoiling the whole program. If I use the simple version

of READNUMBER given above, any program with READNUMBER in it will

bomb out if a user types RETURN by accident.

It’s a good idea to make game and quiz programs as user-proof as you

can so that they don’t bomb out too often. If you want to learn more about

how to make programs more “friendly” to users, I suggest you read Apple

Backpack: Humanized Programming in BASIC, by Scot Kamins and Mitch¬

ell Waite, published by Byte Books. Even though the book is oriented to¬

ward BASIC, a lot of its suggestions for what a “humanized” program

should be are valid for Logo or any other programming language.

PRINTSCREEN commands are actually specialized for each printer

that has the capability to print graphics. In this section I will explain the

PRINTSCREEN commands for two different printers: the Silentype Printer

made by Apple Computer Inc. and the Epson MX80 printer with

GRAFTRAX chips and a Grappler interface card made by Orange Micro In¬

corporated. This last system was used to print all the turtle drawings in this

284 / How the Special Tool Procedures Work

The Silentype Printer

book, with the generous support of Orange Micro, who loaned me the

equipment.

If you have a different kind of printer with graphics capability, you may

be able to use these procedures as models and use the specific commands in

your printer manual to make your printer print turtle drawings.

The first command, PS, is just an abbreviation for PRINTSCREEN,

which actually does all the work.

TO PS

PRINTSCREEN

END

TO PRINTSCREEN

.PRINTER 1

.DEPOSIT 53008 7 ;[DARKEST PRINT]

.DEPOSIT 53007 128 ;[UNIDIRECTIONAL PRINTING]

.DEPOSIT 53012 0 ;[REVERSE PRINT]

PRINT CHAR 17

.DEPOSIT 53007 0 :[BI-DIRECTIONAL PRINTING]

.PRINTER 0

END

.PRINTER 1

turns on the printer (if it is in slot #1). If your printer is in any other slot,

change the number in the first line to the slot number of the printer.

.DEPOSIT

is a Logo command that “deposits” a number into a memory location in the

computer. The first input of .DEPOSIT is the memory location. The second

input is the number deposited there. For example,

.DEPOSIT 53008 7

deposits the value 7 in memory location 53008. This makes the Silentype

Printer print as darkly as possible. If the second input were smaller, the

print would be less dark.

.DEPOSIT 53007 128

makes the printer print in only one direction. This makes copies of screen

pictures sharper.

.DEPOSIT 53012 0

makes the printer reverse the screen image and print black on white.

If you want white drawings on a black background change this line to

.DEPOSIT 53012 255.

PRINT CHAR 17

is actually the command that makes the printing happen. CHAR 17 is the

keyboard character CTRL-Q, which is the command that makes the Silen¬

type Printer print the high-resolution graphics screen.

.DEPOSIT 53007 0

restores the printer to bi-directional printing, which is faster for printing
text.

.PRINTER 0

turns the printer off.

The ; symbol on some of the lines is a comment procedure. Everything

to the right of the ; can be read by someone looking at the program but will

How the Special Tool Procedures Work / 285

The Epson MX80 Printer
with a Grappler Interface

be ignored by the computer. Comments are not used very much in Logo be¬

cause the procedure names and variable names are usually as much as you

need for a comment. When the commands are as obscure as these are, how¬

ever, comments can be very helpful. Here is the procedure:

TO ; :COMMENT

END

The input list iCOMMENT is not used for anything. In fact, the ; procedure

doesn’t do anything at all.

The MX80/Grappler combination has four print options: regular size

print regular size with enhanced (darker) print, large size (rotated), and

large size with enhanced print. These are obtained by four procedures, PS,

PSE, PSB, and PSBE, which are abbreviations for PRINTSCREEN,

PRINTSCREEN.E, PRINTSCREEN.BIG, and PRINTSCREEN.BIG.E.

All four procedures are very similar.

TO PRINTSCREEN

.PRINTER 1

REPEAT 2 [PRINT []]

PRINT (WORD CHAR 9 "G CHAR 13)

.PRINTER 0

END

TO PRINTSCREEN.E

.PRINTER 1
REPEAT 2 [PRINT []]

PRINT (WORD CHAR 9 "GE CHAR 13)

.PRINTER 0

END

TO PRINTSCREEN.BIG

.PRINTER 1
REPEATS [PRINT []]

PRINT (WORD CHAR 9 "GDR CHAR 13)

.PRINTER 0

END

TO PRINTSCREEN.BIG.E

.PRINTER 1

REPEAT 5 [PRINT []]

PRINT (WORD CHAR 9 "GDRE CHAR 13)

.PRINTER 0

END

The graphics printing command for the MX80/Grappler system is a

string of characters starting with CTRL-1 (CHAR 9) and including G and any

of the characters D, R, or E. It ends with RETURN (CHAR 13). G stands

for graphics, D stands for double size, R stands for rotated, and E stands

for enhanced. The WORD command in the third line of each procedure puts

all the characters together into a complete string.

286 / Creating Your Own LWAL Procedures Disk

Appendix Creating Your Own LWAL
T Procedures Disk

This appendix contains detailed instructions for creating your own

LWAL Procedures Disk, if you choose not to purchase one. It assumes that

you are already familiar with the use of the editing and filing systems for

whatever version of Logo you are using. In other words, you should be fa¬

miliar with either the information contained in Chapter 4 of this book or

equivalent information for other versions of Logo. You should also have

some familiarity with the rules of Logo syntax, especially with regard to the

use of variables. This information is contained primarily in Chapter 9 and

Chapter 7 of this book.

The LWAL Procedures Disk contains fifteen separate files, containing

anywhere from one to nearly twenty procedures. Procedures in one file

should be kept separate from those in another. You do this by clearing the

working memory before starting to create a file and then clearing it again af¬

ter saving one file and before beginning work on another.

All of the procedures in the appendix have been carefully tested and

debugged. Since you may make some typing errors while typing them in,

you should carefully test each set of procedures before saving them in a fi¬

nal version on your LWAL Procedures Disk. In each section of the appen¬

dix, references are given to the chapter in the book in which those particu¬

lar procedures are used. This will allow you to test them properly.

Apple Logo Procedures Disk / 287

Apple Logo Procedures Disk

Section I.l.
CIRCLES

Section 1.2.
CCIRCLE

First clear the working memory by typing

ERALL

Then copy these procedures exactly as written:

TO RCIRCLE :R
REPEAT 36 [RCP iR]

END

TO RARC ;R
REPEAT 9 [RCP :R]

END

TO RCP :R
RIGHT 5
FORWARD :R * (3.14159)/ 18

RIGHT 5
END

TO LCIRCLE :R
REPEAT 36 [LCP :R]

END

TO LARC :R
REPEAT 9 [LCP :R]

END

TO LCP :R
LEFT 5
FORWARD -.R * (3.14159)/ 18

LEFT 5
END

When all these procedures have been typed into the editor, type

CTRL-C to leave the editor and return to Logo command mode. Test the

circle procedures by using them as described in Chapter 2. Then save them

on your LWAL Procedures Disk by typing

SAVE "CIRCLES

Clear the working memory by typing

ERALL

Type these procedures exactly as written:

288 / Apple Logo Procedures Disk

Section 1.3.
BOXES

TO CCIRCLE :R
MAKE "PEN? PEN

MAKE "SHOWN? SHOWNP
HIDETURTLE
PENUP FORWARD :R
RIGHT 90

PENDOWN REPEAT 36 [RCP :R]
LEFT 90
PENUP
BACK :R

SETPEN :PEN?

IF :SHOWN? [SHOWTURTLE]
END

TO RCP :R
RIGHTS

FORWARD ;R *3.14159/18
RIGHT 5
END

Now type CTRL-C to leave the editor and return to Logo command
mode. Test CCIRCLE by using it as described in Chapter 10. Then save it
on your disk by typing

SAVE "CCIRCLE

First clear the working memory by typing

ERALL

Copy these procedures exactly as written;

TO DRAWBOX :X1 ;Y1 :X2 :Y2
MAKE "PO POS

PENUP SETPOS SENTENCE :X1 :Y1 PENDOWN
SETY :Y2
SETX ;X2
SETY ;Y1
SETX :X1
PENUP SETPOS :P0
END

OUTBOX? and INBOX? each contain one long line. In typing them,
type each long line as a continuous line, pressing RETURN only where indi¬
cated. Do not type the word “RETURN.”

TO OUTBOX? ;X1 :Y1 ;X2 :Y2 RETURN
OUTPUT (OR (XCOR < :X1) (YCOR < :Y1))

(XCOR > ;X2) (YCOR > :Y2)) RETURN
END RETURN

TO INBOX? :X1 ;Y1 :X2 ;Y2 RETURN
OUTPUT (AND (XCOR > :X1) (YCOR > :Y1)

(XCOR <:X2) (YCOR <:Y2)) RETURN
END RETURN

Apple Logo Procedures Disk / 289

Type CTRL-C to leave the editor and return to Logo command mode.
Test the procedures by using them as described in Chapter 12. Then save

them on your disk by typing

SAVE "BOXES

Section 1.4.
DISTANCE

1

Clear the working memory by typing

ERALL

Type the following procedure as shown. Type RETURN only where m

dicated. Do not type the word “RETURN.”

TO DISTANCE :P1 RETURN
MAKE "X1 FIRST :P1 RETURN
MAKE "Y1 LAST ;P1 RETURN

[OUTPUT SORT ((XCOR - :X1) * (XCOR - :X1)
i + (YCOR - :Y1) * (YCOR - :Y1)) RETURN

END RETURN

Type CTRL-C to leave the editor and return to Logo command mode.
Test DISTANCE by using it as described in Chapter 10. Then save it on

your disk by typing

SAVE "DISTANCE

Section 1.5.
READKEY

Clear the working memory by typing

ERALL

Then copy the following procedure exactly as written:

TO READKEY
IF KEYP [OUTPUT READCHAR]

OUTPUT"
END

Type CTRL-C to leave the editor and return to Logo command mode
Test READKEY by using it as described in Section 14.5. Then save it on

your disk by typing

SAVE"READKEY

Section 1.6.
PICKRANDOM

Clear the working memory by typing

ERALL

Type these procedures exactly as written:

TO PICKRANDOM :OBJECT
MAKE "NUMBER RANDOM COUNT :OBJECT
OUTPUT PICK (:NUMBER + 1) :OBJECT

END

290 / Apple Logo Procedures Disk

Section 1.7.
READNUMBER

Section 1.8.
PRINTSCREEN

TO PICK :NUMBER rOBJECT

IF ;NUMBER = 1 [OUTPUT FIRST ;OBJECT]

OUTPUT PICK (:NUMBER - 1) (BUTFIRST :OBJECT)
END

Type CTRL-C to leave the editor and return to Logo command mode.
Test the procedures by using them as described in Chapter 13. Then save
them on your disk by typing

SAVE "PICKRANDOM

Clear the working memory by typing

ERALL

Then copy this procedure exactly as written:

TO READNUMBER
MAKE "NUM1 READLIST
TEST :NUM1 = []

IFTRUE [PRINT [PLEASE TYPE A NUMBER] OUTPUT READNUMBER]
TEST NOT NUMBERP FIRST :NUM1

IFTRUE [PRINT [PLEASE TYPE A NUMBER] OUTPUT READNUMBER]
IFFALSE [OUTPUT FIRST :NUM1]
END

Type CTRL-C to leave the editor and return to Logo command mode.
Test READNUMBER by using it as described in Chapter 9. Then save it on
your disk by typing

SAVE "READNUMBER

Clear the working memory by typing

ERALL

The first set of procedures are to be used with a Silentype (TM) printer,
sold by Apple Computer Inc. Copy them exactly as written:

TO PRINTSCREEN
.PRINTER 1

• DEPOSIT 53008 7 ; [DARKEST PRINT]
■ DEPOSIT 53007 128 ; [UNIDIRECTIONAL]
• DEPOSIT 53012 0 ; [REVERSE PRINT]
PRINT CHAR 17

• DEPOSIT 53007 0 ; [BIDIRECTIONAL]
• PRINTER 0
END

TO PS

PRINTSCREEN
END

TO ; :COMMENT
END

Apple Logo Procedures Disk / 291

Type CTRL-C to leave the editor and return to Logo command mode.
Test these procedures by using them as described in Chapter 4. Then save

them on your disk by typing

SAVE "PRINTSCREEN.S

The next set of procedures are for use with the Epson MX80 or MX 100
printers, and the Grappler graphics interface manufactured by Orange Mi¬

cro. Clear the working memory by typing

ERALL

Then copy the following procedures exactly as written:

TO PRINTSCREEN

.PRINTER 1
REPEAT 2 [PRINT []]
PRINT (WORD CHAR 9 "G CHAR 13)

.PRINTER 0
END

TO PRINTSCREEN.E

.PRINTER 1
REPEAT 2 [PRINT []]
PRINT (WORD CHAR 9 "GE CHAR 13)

.PRINTER 0
END

TO PRINTSCREEN.BIG

.PRINTER 1
REPEAT 5 [PRINT []]
PRINT (WORD CHAR 9 "GDR CHAR 13)

.PRINTER 0
END

TO PRINTSCREEN.BIG.E

.PRINTER 1
REPEAT 5 [PRINT []]
PRINT (WORD CHAR 9 "GDRE CHAR 13)

.PRINTER 0
END

TO PS
PRINTSCREEN

END

TO PSE
PRINTSCREEN.E

END

TO PSB
PRINTSCREEN.BIG

END

TO PSBE
PRINTSCREEN.BIG.E

END

292 / Apple Logo Procedures Disk

Type CTRL-C to leave the editor and return to Logo command mode.
Test these procedures with an Epson printer and a Grappler interface as de
scribed in Chapter 4. Save them on your disk by typing

SAVE "PRINTSCREEN.G

Section 1.9.
GUESSNUMBER

Clear the working memory by typing

ERALL

Before typing the GUESSNUMBER procedures, load in the tool proce¬
dure READNUMBER by typing LOAD "READNUMBER

Then type these procedures exactly as written:

TO GUESSNUMBER
INSTRUCTIONS
CHOOSENUMBER
GETGUESS
END

TO INSTRUCTIONS
CLEARTEXT

PRINT [1 AM THINKING OF A NUMBER BETWEEN 0]
PRINT [AND 100. SEE IF YOU CAN GUESS IT.]
END

TO CHOOSENUMBER
MAKE "NUMBER 1 + RANDOM 99
END

TO GETGUESS
TYPE ">

MAKE "GUESS READNUMBER
CHECKGUESS :GUESS :NUMBER
END

TO CHECKGUESS :GUESS :NUMBER
IF :GUESS = :NUMBER [PRINT [GOT IT!] STOP]
IF :GUESS > :NUMBER [PRINT [TOO HIGH] GETGUESS STOP]
IF :GUESS < ;NUMBER [PRINT [TOO LOW] GETGUESS STOP]
END

Type CTRL-C to leave the editor and return to Logo command mode.
Test GUESSNUMBER by using it as described in Chapter 9. Then save it
on your disk by typing SAVE "GUESSNUMBER

Section 1.10.
MATHQUIZ

Clear the working memory by typing ERALL

Then load in the READNUMBER procedure by typing

LOAD "READNUMBER

Then copy all these procedures exactly as written:

Apple Logo Procedures Disk / 293

TO MATHQUIZ
CLEARTEXT
GETTOTAL
MAKE "COUNT 1
MAKE "SCORE 0
ADDQUIZ :COUNT TOTAL :SCORE

END

TO GETTOTAL
PRINT [HOW MANY PROBLEMS DO YOU WANT?]
MAKE 'TOTAL READNUMBER

END

TO ADDQUIZ :COUNT TOTAL :SCORE

CLEARTEXT
GETNUMBERS
GIVEPROBLEM
GETANSWER
WAITFORUSER
IF :COUNT = TOTAL [FINISH STOP]
ADDQUIZ (:COUNT + 1) TOTAL :SCORE

END

TO GETNUMBERS
MAKE"NUMBER1 RANDOM 100
MAKE "NUMBER2 RANDOM 100
MAKE "RIGHTANSWER :NUMBER1 + :NUMBER2

END

TO GIVEPROBLEM
PRINT SENTENCE [PROBLEM] :COUNT

PRINT []
TYPE (SENTENCE :NUMBER1 [+] :NUMBER2 [=])

END

TO GETANSWER
MAKE "RESPONSE READNUMBER
TEST RESPONSE = :RIGHT ANSWER
IFTRUE [PRINT [CORRECT]]
IFTRUE [MAKE "SCORE :SCORE + 1]
IFFALSE [PRINT SENTENCE [SORRY, THE ANSWER IS]

:RIGHTANSWER]

END

TO WAITFORUSER
PRINT [PLEASE PRESS RETURN]
PRINT READLIST
END

TO FINISH
CLEARTEXT
PRINT SENTENCE [YOUR SCORE IS] :SCORE
PRINT (SENTENCE [OUT OF] TOTAL [PROBLEMS])

END

Type CTRL-C to leave the editor and return to Logo command mode.
Test MATHQUIZ by using it as described in Chapter 9. Then save it on your

disk by typing SAVE "MATHQUIZ

294 / Apple Logo Procedures Disk

Section 1.11.
SHOOT

Clear the working memory by typing

ERALL

Next, load in the tool procedures CCIRCLE, DISTANCE, and
READNUMBER that should already have been saved on your disk. If you
have not yet saved these procedures on your disk, type them in and save
them individually before typing in the SHOOT procedures. Load in the pro¬
cedures by typing

LOAD "CCIRCLE
LOAD "DISTANCE
LOAD "READNUMBER

Then type the following procedures exactly as written:

TO START
STARTDATA
STARTGAME
END

TO STARTDATA
MAKE "SHOTNUMBER 0
MAKE "XTARGET (90 - 10 * RANDOM 19)
MAKE "YTARGET (80 - 10 * RANDOM 6)

MAKE "XSTART (90 - 10 * RANDOM 19)
MAKE "YSTART (-10 * RANDOM 3)
MAKE "HSTART (10 * RANDOM 36)
MAKE "PTARGET SENTENCE :XTARGET :YTARGET
MAKE "PSTART SENTENCE :XSTART :YSTART
END

TO STARTGAME
CLEARSCREEN
SETBG 6
HIDETURTLE
DRAWTARGET :PTARGET
STARTTURTLE :PSTART :HSTART
SHOWTURTLE
END

TO DRAWTARGET :PTARGET
PENUP
SETPOS :PTARGET
CCIRCLE 10
END

TO STARTTURTLE :PSTART :HSTART
PENUP
SETPOS :PSTART
SETHEADING :HSTART
END

TO SHOOT
MAKE "SHOTNUMBER :SHOTNUMBER + 1
PRINT [HOW FAR?]
MAKE "SHOT READNUMBER
PENDOWN FORWARD :SHOT

Apple Logo Procedures Disk / 295

TEST (DISTANCE :PTARGET) < 10

IFTRUE [HIT]
IFFALSE [MISS]
END

TO HIT
PRINT [CONGRATULATIONS! YOU HIT THE TARGET!]
PRINT (SENTENCE [IT TOOK YOU ONLY] :SHOTNUMBER [SHOTS.])

END

TO MISS
PRINT SENTENCE [MISSED SHOT NUMBER] :SHOTNUMBER

WAIT 200
STARTTURTLE PSTART :HSTART

END

Type CTRL-C to leave the editor and return to Logo command mode.
Test the SHOOT procedures by using them as described in Chapter 3. Then

save them on your disk by typing

SAVE "SHOOT

Section 1.12.
QUICKDRAW

Clear the working memory by typing

ERALL

First you will have to load in the tool procedure READKEY from your
disk. If you have not yet saved READKEY on your disk, type in and save it
before typing in the QUICKDRAW procedures. Load it in by typing

LOAD "READKEY

Then type these procedures exactly as written:

TO QD
START
QUICKDRAW

END

TO START
MAKE "DRAWLIST []
CLEARSCREEN

END

TO QUICKDRAW
COMMAND
QUICKDRAW
END

TO COMMAND
MAKE "COM READKEY
IF :COM = "F [FORWARD 20 ADDLETTER :COM]
IF :COM = "B [BACK 20 ADDLETTER :COM]
IF :COM = "R [RIGHT 30 ADDLETTER :COM]
IF :COM = "L [LEFT 30 ADDLETTER :COM]
IF :COM = "E [FINISH THROW "TOPLEVEL]

END

296 / Apple Logo Procedures Disk

Section 1.13.
RACE

TO ADDLETTER ;LETTER
MAKE "DRAWLIST SENTENCE iDRAWLIST :LETTER
END

TO FINISH
SPLITSCREEN
PRINT [PLEASE CHOOSE ONE WORD AS A NAME]
PRINT [FOR THIS DRAWING.]
PRINT [TO FORGET IT, JUST PRESS RETURN]
MAKE "REPLY READLIST
IF :REPLY = [] [STOP]
MAKE FIRST :REPLY :DRAWLIST
END

TO RD :DRAWLIST
IF :DRAWLIST = [] [STOP]
RECOMMAND FIRST iDRAWLIST
RD BUTFIRST iDRAWLIST
END

TO RECOMMAND iCOM
IF iCOM = "F [FORWARD 20]
IF iCOM = "B [BACK 20]
IF iCOM = "R [RIGHT 30]
IF iCOM = "L [LEFT 30]
END

Type CTRL-C to leave the editor and return to Logo command mode.
Test the QUICKDRAW procedures by using them as described in Chapter 3.
Then save them on your disk by typing

SAVE "QUICKDRAW

Clear the working memory by typing ERALL

Before typing in the RACE procedures, you will need to load in the tool
procedures CCIRCLE, DISTANCE, and READKEY. If you have not yet
saved these procedures on your disk, type them in and save them before
typing in the RACE procedures. Then load them in by typing

LOAD "CCIRCLE
LOAD "DISTANCE
LOAD "READKEY

Then type the following procedures exactly as writteni

TO RACE
DRAWTRACK
SETSTART
RACECAR 0
END

TO DRAWTRACK
CLEARSCREEN
HIDETURTLE
CCIRCLE 50
CCIRCLE 70
LEFT 90
PENUP FORWARD 50

Apple Logo Procedures Disk / 297

PENDOWN FORWARD 20

PENUP BACK 70
RIGHT 90
END

TO SETSTART
PENUP SETPOS [-60 0]
SETHEADING 0
FORWARD 1 SHOWTURTLE

MAKE "OLDY 1
MAKE "DISTANCE 0

END

TO RACECAR TIME
IF FINISHED? [FINISH STOP]
IF CRASHED? [CRASH STOP]
FORWARD DISTANCE
COMMAND
RACECAR TIME + 1

END

TO CRASHED?
IF (DISTANCE [0 0]) > 70 [OUTPUT "TRUE]
IF (DISTANCE [0 0]) < 50 [OUTPUT "TRUE]

OUTPUT "FALSE

END

TO CRASH
PRINT [YOU CRASHED INTO THE TRACK WALL]

END

TO FINISHED?
IF AND (YCOR > 0) (:OLDY < 0) [OUTPUT "TRUE]

MAKE "OLDY YCOR
OUTPUT "FALSE

END

TO FINISH
PRINT [YOU CROSSED THE FINISH LINE]
PRINT SENTENCE [WITH A TIME OF] TIME

END

TO COMMAND
MAKE "COM READKEY

IF :COM = " [STOP]
IF :COM = "F [MAKE "DISTANCE DISTANCE + 5 STOP]
IF :COM = "S [MAKE "DISTANCE DISTANCE - 5 STOP]

IF :COM = "R [RIGHT 30 STOP]
IF :COM = "L [LEFT 30 STOP]

END

TO RESTART
SETSTART
RACECAR 0
END

Type CTRL-C to leave the editor and return to Logo command mode.
Test the RACE procedures by using them as described in Chapter 12. Then

save them on your disk by typing

SAVE "RACE

298 / Apple Logo Procedures Disk

Section 1.14. Clear the working memory by typing ERALL
POET

Before typing in the POET procedures, you will need to load in the two
tool procedures READNUMBER and PICKRANDOM. If you haven’t yet
saved these procedures on your disk, type them in and save them now.
Then load them in by typing

LOAD "PICKRANDOM
LOAD "READNUMBER

Then type in the following procedures and variable names exactly as
written. Notice that the variables "ARTICLELIST, "ADJECTIVELIST,
"NOUNLIST, "VERBLIST, and "PREPOSITIONLIST are not procedures.
They are typed in using the Logo command MAKE before leaving the edi¬
tor.

TO POEMS
CLEARTEXT
PRINT [HOW MANY POEMS DO YOU WANT?]
MAKE "N READNUMBER
CLEARTEXT PRINT [] PRINT []
PRINT SENTENCE :N [POEMS BY THE LOGO POET]
PRINT []
REPEAT :N [POET PRINT []]
END

TO POET
PRINT LINE1
PRINT LINE2
PRINT LINES
END

TO LINE1

OUTPUT (SENTENCE ARTICLE ADJECTIVE NOUN)
END

TO LINE2

I OUTPUT (SENTENCE ARTICLE NOUN VERB PREPOSITION ARTICLE
1 ADJECTIVE NOUN)

END

TO LINES

OUTPUT (SENTENCE ADJECTIVE ADJECTIVE NOUN)
END

TO ARTICLE
OUTPUT PICKRANDOM :ARTICLELIST
END

TO ADJECTIVE

OUTPUT PICKRANDOM :ADJECTIVELIST
END

TO NOUN
OUTPUT PICKRANDOM :NOUNLIST
END

TO VERB
OUTPUT PICKRANDOM :VERBLIST
END

Apple Logo Procedures Disk / 299

TO PREPOSITION
OUTPUT PICKRANDOM iPREPOSlTIONLIST

END

TO WORDLISTS
CLEARTEXT
PRINT [ARTICLES;]
PRINT [] PRINT lARTICLELIST

PRINT []
PRINT [NOUNS:]
PRINT [] PRINT -.NOUNLIST

PRINT []
PRINT [VERBS:]
PRINT [] PRINT :VERBLIST

PRINT []
PRINT [PLEASE PRESS RETURN TO CONTINUE]

PRINT READLIST
CLEARTEXT
PRINT [ADJECTIVES:]
PRINT [] PRINT :ADJECTIVELIST

PRINT []
PRINT [PREPOSITIONS;]
PRINT [] PRINT ;PREPOSITIONLIST

END
MAKE " ARTICLELIST [A THE ONE EACH EVERY]

MAKE "ADJECTIVELIST [AUTUMN HIDDEN BUBBLING BOILING
SWIRLING GREEN BITTER MISTY SILENT EMPTY DRY DARK
SUMMER ICY DELICATE QUIET WHITE COOL SPRING WINTER
TWILIGHT DAWN CRIMSON AZURE BLUE BILLOWING COLD DAMP
LIMPID FROSTY WILD SPARKLING MELLOW SCENTED STILL]

MAKE "NOUNLIST [WATERFALL RIVER BREEZE MOON RAIN WIND
SEA MORNING SNOW LAKE SUNSET SHADOW PINE LEAF GLITTER
DAWN FOREST HILL CLOUD MEADOW BROOK BIRD BUTTERFLY
DEW DUST FIR NIGHT POND SNOWFLAKE VIOLET FLOWER

FIREFLY FOX FISH OTTER CROW RAVEN OWL]

f MAKE "VERBLIST [SHAKES DRIFTS [HAS STOPPED] SLEEPS CREEPS
MURMURS FLIES FLUTTERS [HAS FALLEN] [IS TRICKLING] [HAS
PASSED] [HAS RISEN] FLOATS LEAPS RACES HIDES [IS HIDDEN]

CRIES [CRIES OUT] AWAKES RISES]

[MAKE "PREPOSITIONLIST [ON IN OFF [OUT OF] UNDER OVER NEAR

1 BENEATH ERE OVER AROUND BELOW ABOVE]

Type CTRL-C to leave the editor and return to Logo command mode.
Test the POET procedures by using them as described in Chapter 13. Then

save them on your disk by typing

SAVE "POET

Your LWAL Procedures Disk is now complete!

r
Care and Management of Disks and Files / 301

Appendix Management of Disks
II and Files

In this appendix I will explain how to initialize, maintain, and copy
Logo work disks. I will also give some advice about caring for disks and the

information stored on them.
The most important part of your Logo system is the information and

procedures that you have created and saved. And this is just the part that is
most easily damaged by accident or carelessness. Because information
stored on disks is so easy to change, it’s important to have a clear under¬
standing of how to protect and maintain it. It’s also a good idea to keep an

extra copy of any important work on a backup disk.
In Sections II.5, II.6, and II.7, I will explain a bit about using packages

of procedures, how to bury them, and how to create or modify a startup

file. Section II.7 also explains how to add the circle procedures used in this

book to the startup file.

Section II. 1.
Initializing Logo Work
Disks

Logo work disks are initialized using BASIC commands and using the
same process as disks used for other Apple programs. To initialize a Logo
work disk, start up your computer using Applesoft BASIC. This can be

done with the DOS 3.3 System Master.

1. Insert the DOS 3.3 System Master disk in the disk drive and start the

computer.

2. When you see the Applesoft prompt,], insert a blank file disk to be ini¬
tialized. You can also reinitialize an old disk, but all the information

that was on it will now be destroyed.

3. Type

INIT HELLO RETURN

The disk drive will whir and click for about a minute. When it stops

you’ve got a disk that s ready to accept Logo files.

4 If you want to add the Apple Logo startup file to your new Logo work
disk, just start Apple Logo in the usual way. Press RETURN without
removing the Language Disk. When the Welcome to Logo message ap¬
pears, remove the language disk and insert your new work disk. Then

type

SAVE "STARTUP "AIDS

This will save a package of procedures called "AIDS in a file called
"STARTUP on your Logo work disk. I will explain more about pack¬

ages in Section 11.5 and 11.6 of this appendix. In Section 11.7, I will
show how you can add new procedures to the startup file or create

your own startup file.

302 / Care and Management of Disks and Files

Section II.2.
Copying Logo Work
Disks

Section II.3.
Copying Files from One
Disk to Another

It is sometimes necessary to make a back-up copy of an entire disk.
You might want to share a disk full of Logo procedures with a friend. Or
you might want a back-up copy of one of your disks as a protection against
accidentally losing some important programs. A copy program is available
on your DOS 3.3 System Master Disk. It works a little differently depending
on whether you have one disk drive or two. Complete directions are given
in your DOS 3.3 Manual. Here is a short version of what to do;

1. Insert the DOS 3.3 System Master into drive 1. Turn on the power.

2. When the Applesoft BASIC prompt,], appears, type

RUN COPYA RETURN

3. The computer will then ask which slot number and how many drives
you are using. If you have only one disk drive, you will type

RETURN
RETURN
RETURN

1 (no RETURN)

If you have two disk drives, just press RETURN four times.

4. If you have one disk drive, insert the disk you are copying from and
press RETURN. Follow all the directions printed on the screen about
switching disks. You will alternate between the original and the dupli¬
cate disk until the computer tells you it is finished copying.

If you have two disk drives, your job will be a lot easier and quicker.
Insert the disk you are copying from, the original, in drive 1. Insert the new
disk in drive 2. Be sure not to mix these up! If you do, you’ll be very sorry.

Then press RETURN, and the computer will do the rest.
Protect yourself against actually copying a blank disk onto a good one

and losing all your information. Just put one of those small, sticky tabs that
come with a box of disks over the little notch on the disk from which you
are copying. This will stop the computer from writing any information onto
that disk accidentally.

Another way to make back-up copies of your work is to save your pro¬
cedures on two different initialized Logo work disks as you go along. After
saving a file once in the normal way, insert a new disk and save the file
again, using the same file name. Then remove the back-up disk and insert
your regular disk as you continue your work.

If you want to copy an entire file onto another disk so that you can
share a project with another person, the process is very similar. Suppose
you want to transfer a file called "TRUCKS. First, clear the working memo¬
ry by typing

ERALL

Then insert your work disk and type

LOAD "TRUCKS

Care and Management of Disks and Files / 303

Now insert the second disk and type

SAVE "TRUCKS

Section II.4.
Updating Files

A good way to protect yourself against accidentally losing information
is to update your files as you work. This is especially useful when you are
working on a large project. When you’re working on a large project, it’s a
good idea to save your file every time you finish teaching the computer an
important new procedure. Instead of always using the same old file name,
"TRUCKS, for example, you can number your files, increasing the number

by 1 every time you save a new file. First, type

SAVE "TRUCKS1

A little later, save something new by typing

SAVE "TRUCKS2

Still later,

SAVE "TRUCKS3

and so on. If you type CATALOG, you will see a large number of files on
your disk. When you are all finished working, you can erase all the unneed¬
ed files, using the ERASEFILE command. It is important to remember to
erase the extra files eventually so that you don’t waste disk space.

Section II.5.
Saving Some of the
Procedures in a File

A slightly trickier thing to do is to save some procedures from one file
in another file. You could use this process to clean up a file that has too
many unneeded procedures in it or to transfer some useful tool procedures
from one file to another. The process includes a few extra steps. There are
several ways to do this. One involves erasing all the unneeded procedures
and saving the rest. Another involves making packages of procedures that
you want to keep or erase and saving the package separately.

The first method I’ll describe involves erasing unneeded procedures
from the work space (working memory). First, clear the work space by typ¬

ing

ERALL

Then, load the file that has the procedures you want to save separately by

typing

LOAD "TRUCKS

304 / Care and Management of Disks and Files

(Use whatever file name you want instead of 'TRUCKS, of course.) Now
type

POTS

to see a list of all the procedures in this file. One at a time, erase all the
procedures that you don’t want in the new file. You do this with the
ERASE command.

ERASE "BOX
ERASE "WHEEL1

When you are finished erasing procedures, type

POTS

to check that only the procedures you want are in the working memory.
Then, save the procedures in a new file.

If you want to add these new procedures to a second file, load that file
now. Suppose the second file is called "CARS. Type

LOAD "CARS

Then type

POTS

You should see that your working memory contains all of the procedures in
"CARS plus the procedures you wanted from 'TRUCKS. Now you can save
them all in the file called "CARS. First, erase the old file by typing

ERASEFILE "CARS

Then, save all the procedures by typing

SAVE "CARS

Another way to save some procedures from one file in another file is to
put all the procedures you want to save in a package. Apple Logo has a
command called PACKAGE that lets you put a list of procedures into a
package that can be saved or erased separately. Here’s how it works. First,
load the file called "TRUCKS and decide which procedures you want to put
into a package. Then, pick a name for the package and type

PACKAGE "NEWTRUCKS [TRUCK BIGBOX SMALLBOX WHEELS . . .]

Make sure that all the procedures you want to keep in the new file are in
the list. Now, save the package in a file. It’s a good idea to use different
names for the file and the package. Type

SAVE "NEWT "NEWTRUCKS

This saves a package of procedures called "NEWTRUCKS in afile called
"NEWT. If you had used SAVE with only one input in the usual way, all the

Care and Management of Disks and Files / 305

procedures in the work space would have been saved in the new file. Now,

clear the work space by typing

ERALL

Load the procedures in the "CAR file and the procedures in the "NEWT file

by typing

LOAD "CARS
LOAD "NEWT

Now, erase the old "CARS file and save all the procedures by typing

ERASEFILE "CARS
SAVE "CARS

There are many other ways to do this sort of thing.

Section II.6.
Burying Packages of
Procedures

Apple Logo allows you to bury a package of procedures so that buried
procedures will not be accidentally erased from the work space. Buried pro¬
cedures are also less visible to a user because their names are not listed

when the POTS command is typed.
There are two main reasons to bury procedures. The first is to make

tool procedures look like primitive Logo commands. Since buried proce¬
dures are not printed out unless they are specially called for, they seem to
the user to be part of the “system.” Procedures in the startup file have

been buried for this reason.
The second reason is to keep tool procedures from being saved in the

same file as the other procedures you may be working on. If all the proce¬
dures in the startup file were saved every time you saved your work space,
you would fill up your work disk a lot faster. Since the startup procedures
are available whenever you need them, it’s not necessary to save them over

and over again in every file.
Here’s how it works. Let’s use circle-and-arc procedures as an exam¬

ple. Circles and arcs are made with six procedures, RCIRCLE, LCIRCLE,
RARC, LARC, RCP and LCP. These can be found in the "CIRCLES file on
the LWAL procedures disk. The first thing to do is to put them into a pack¬

age. There are two ways to do this.

1. Load them directly into a package. Let’s call the package

"CIRCTOOLS. Type

LOAD "CIRCLES "CIRCTOOLS

This loads the file called "CIRCLES into the working memory, or work
space, and puts all the procedures in that file into a package called

"CIRCTOOLS.

2. The other way is to load them into the work space normally and pack¬

age them with the PACKAGE command.

LOAD "CIRCLES
PACKAGE "CIRCTOOLS [RCIRCLE LCIRCLE RARC LARC RCP LCP]

306 / Care and Management of Disks and Files

You can also use the PACKAGE command with any group of proce¬
dures in the working memory.

Now, let’s bury them. First type POTS. You should see RCIRCLE and
the rest among the procedures listed. Now type

BURY "CIRCTOOLS
POTS

Now the circle procedures will not be listed. You can erase all the rest
of your procedures using ERALL and the circle procedures will not be af¬
fected. You can save all your other procedures without saving the circle
procedures.

Burying can be reversed with the UNBURY command.

UNBURY "CIRCTOOLS

You can print out the names or the procedures in a buried package by
using the package name as input to POTS or POPS.

POTS "CIRCTOOLS

prints the titles of all procedures in the "CIRCTOOLS package.

POPS "CIRCTOOLS

prints out all the procedures in the package.

PO "RCIRCLE

prints out the procedure, RCIRCLE, even if it’s part of a buried package.
If you save a package of buried procedures in a file, they will be buried

whenever they are loaded back in. Just use the package name after the file
name when saving them.

SAVE "NEWCIRCLES "CIRCTOOLS

Whenever you load "NEWCIRCLES, you will load in a package of bur¬
ied circle procedures.

In the next section. I’ll show you how to use a buried package to
change the Apple Logo startup file or to create a new one of your own.
There’s really a lot more that can be done with packaging and burying, but
I don’t have room to explain it all here. A lot of information is given in the
Apple Logo Reference Manual. Unfortunately, it’s not explained very clear¬
ly, but you can figure it out if you work slowly and try things. Exploring
with packages and files is the same as exploring with the turtle. You can’t
hurt the computer. Just make sure you’ve saved all the information you
really need and put a backup disk away before experimenting. There’s noth¬
ing worse than losing vital information while exploring with files. I know.
I’ve done it.

Care and Management of Disks and Files / 307

Section II.7.
Modifying the Startup
File

The startup file contains a buried package called AIDS.

If you load Logo normally and then type

POTS "AIDS

you’ll see the names of all the procedures and subprocedures in the "AIDS
package. These are the procedures that are saved in the startup file, which

Logo is programmed to load automatically when starting.
Now suppose you want to create your own startup file on the Logo

Language Disk or on your own Logo work disk. Let’s use circle procedures
as an example. You start by making a package of buried circle procedures

as shown in the last section.

LOAD "CIRCLES "CIRCTOOLS
BURY "CIRCTOOLS

Now erase the old startup file and save the new one with the

"CIRCTOOLS package instead.

ERASEFILE "STARTUP
SAVE "STARTUP "CIRCTOOLS

Now, you’ll have a set of buried circle procedures in your work space

everytime you start Logo with that particular work disk.
Suppose you just want to add these circle procedures to "STARTUP

without erasing the old procedures. Just save two buried packages in the
startup file. Remember that the original package in the startup file was
called "AIDS. You can save both "AIDS and "CIRCTOOLS in the startup file

this way.

ERASEFILE "STARTUP
SAVE "STARTUP [AIDS CIRCTOOLS]

Now all of those procedures will be in the startup file. I recommend
this approach as the easiest way to do projects with circles without thinking

too much about them.
I’ve used circle procedures as examples in these two sections. But of

course you can bury any package of procedures and put any number of
packages of procedures into your startup files. Some people like to make
different startup files for different work disks because different projects
need different kinds of tools. Just be careful when you experiment with
these commands. Make sure you have at least one disk with the original
startup file on it, and put that disk away in a safe place before you start

erasing files.

308 / Care and Management of Disks and Files

Section II.8.
Some Commonsense Tips
for Caring for Disks

This appendix ends with a few “do’s and don’ts” that can help you
take care of disks.

DO

• Put each disk away in its own envelope.

• Store disks in a box where they will be free from dust and out of the
way when they are not being used.

• Carefully label each disk with a felt-tip pen so that you know what in¬
formation is on it. Nothing is more confusing than having a whole pile
of disks with no way to remember what was stored on each one.

DON’T

• Leave disks lying around out of their envelopes.

• Put disks on a radiator or in direct sunlight.

• Put disks near a magnet or electric motor.

• Write on a disk with a pencil or a ball-point pen.

• Throw, drop, or mangle a disk.

Reference List of Logo Commands Used in This Book / 309

Appendix Reference List of Logo
JJJ Commands Used in This Book

This appendix lists all the Logo commands used in this book. The list¬

ing for each command includes its name, short form, if any, examples
showing how the command is used, and the page on which its use is de¬

scribed.

Section IILl.
Turtle Commands Page Command

Short
Form

18 CLEARSCREEN CS

18 FORWARD FD

18 ACK BK

18 RIGHT RT

18 LEFT LT

24 PENUP PU

24 PENDOWN PD

35 SETPC

35 SETBG

39 HIDETURTLE HT

39 SHOWTURTLE ST

40 WRAP

40 FENCE

41 WINDOW

42 CLEAN

42 HOME

42 FULLSCREEN CTRL-L

42 SPLITSCREEN CTRL-S

43 TEXTSCREEN CTRL-T

154 HEADING

206 SETPOS

207 SETHEADING SETH

208 SETX

208 SETY

273 PEN

273 SETPEN

273 SHOWNP

275 XCOR

275 YCOR

Examples with Inputs

FORWARD 20, FD 20
BACK 10, BK 10
RIGHT 90, RT 90
LEFT 30, LT 30

SETPC 3
SETBG 5

IF HEADING = 0 [STOP]
PRINT HEADING
SETPOS [100 30], SETPOS [10 -20]
SETHEADING 90, SETH 30
SETX 50, SETX -100
SETY 35, SETY -20

PRINT XCOR, SETX XCOR + 20
PRINT YCOR, SETY YCOR - 20

310 / Reference List of Logo Commands Used in This Book

Section III.2.
Editing and Filing Page Command

Commands 58 TO
58 END
59 EDIT
59 ERASE
65 PO
65 POALL
65 ERALL
70 POTS
70 SAVE
70 LOAD
70 CATALOG
70 ERASEFILE

Section III.3.
Input, Output, and Page Command

Printing Commands 16 PRINT
74 • PRINTER

180 READLIST
195 TYPE
195 CLEARTEXT
241 PADDLE

241 BUTTONP
277 KEYP
277 READCHAR

Section III.4.
Arithmetic and Page Command
Number 177 +
Commands 177

177 *

177 /
195 RANDOM
242 REMAINDER
277 SORT
282 NUMBERP

Short
Form Examples with Inputs

TO BOX

ED EDIT "BOX, ED "BOX
ER ERASE "BOX, ER "BOX

PO "BOX

SAVE "CIRCLES
LOAD "CIRCLES

ERASEFILE "OLDSTUFF

Short
Form Examples with Inputs

PR PRINT [CATHY PERINI]
• PRINTER 1, .PRINTER 0

RL MAKE "ANSWER READLIST
TYPE [GUESS A NUMBER]

FORWARD PADDLE 0
PRINT PADDLE 1
IF BUTTONP 1 [CLEARSCREEN]
IF KEYP OUTPUT READCHAR

RC MAKE "KEY READCHAR

Short
Form Examples with Inputs

FORWARD :SIZE + 10, PRINT 5 + 3
PRINT 35-10
FORWARD :SIZE - 10
PRINT 3*5, FORWARD :SIZE * 3
PRINT 360 / 3, RIGHT 360 / 3
PRINT RANDOM 20
PRINT REMAINDER 17 3
PRINT SORT 100
IF (NOT NUMBERP :ANSWER) [OUTPUT

READNUMBER]

Reference List of Logo Commands Used in This Book / 311

Section III.5.
Word, List, and Page Command

Variable Commands 155 MAKE

179 WORD

179 SENTENCE

180 FIRST

180 BUTFIRST

180 LAST

180 BUTLAST

231 THING

Section III.6.
Procedure Control Page Command

and Conditional 82 REPEAT
Commands 140 IF

140 STOP
140 >

144 =

178 <

192 AND
192 OR
200 TEST

200 IFTRUE

200 IFFALSE

208 WAIT

226 THROW
247 OUTPUT

282 NOT

Section III.7.
Miscellaneous Page Command

Commands 284 .DEPOSIT
284 CHAR

Short
Form Examples with Inputs

MAKE "START HEADING
MAKE "SIZE 50
PRINT WORD "HEL "LO
PRINT (WORD "A "B "C)

SE PRINT SENTENCE [HELLO] [THERE]
PRINT SENTENCE "HELLO [THERE]
PRINT SENTENCE "HI "FRIEND
PRINT (SE [HELLO] [MY] [FRIEND])
PRINT FIRST "HELLO
PRINT FIRST [HELLO THERE FRIEND]

BF PRINT BUTFIRST "HELLO
PRINT BF [HELLO THERE FRIEND]
PRINT LAST "HELLO
PRINT LAST [HELLO MY FRIEND]

BL PRINT BUTLAST [HELLO MY FRIEND]
PRINT BL "HELLO
PRINT THING PICT

Short
Form Examples with Inputs

REPEAT 4 [FORWARD 20 RIGHT 90]

IF :SIZE < 10 [STOP]
IF ;SIZE < 10 [STOP]
IF :ANGLE > 90 [STOP]
IF :SIZE = 100 [STOP]
PRINT 5 = 3 + 2
IF :SIZE < 10 [STOP]
IF AND (YCOR > 0) (XCOR > 0) [STOP]
IF OR (XCOR > 0) (YCOR < 0) [STOP]
TEST lANSWER = 7

IFT IFTRUE [PRINT [HOORAY!]]
IFF IFFALSE [PRINT [SORRY]]

WAIT 100
IF ;COM = "E [THROW "TOPLEVEL]

OP OUTPUT "FALSE, OP LENGTH + 10
IF NOT (XCOR > 0) [STOP]
IF (NOT lANSWER) [OUTPUT

READNUMBER]

Short
Form Examples with Inputs

.DEPOSIT 53007 7
PRINT CHAR 17

312 / Reference List of Logo Commands Used in This Book

Section III.8. Page Key Name What it Does
Special Keys Used
in Logo Command

13
14 CTRL-B

Rubout
Backspace

Erases a character to the left of the cursor
Moves the cursor back one space

14 Right-arrow Moves the cursor ahead one space
14 REPT Repeat Repeats the previous key as long as it is held down
14 CTRL-G Stop Stops whatever Logo is doing
14 RESET Reset Crashes the system!
16 RETURN Do-it Sends Logo a typed command
42 CTRL-L Fullscreen Shows the complete turtle screen
42 CTRL-S Splitscreen Splits the screen between turtle and text
43 CTRL-T Textscreen Shows the complete text screen

Section III.9. Keys to Move The Cursor
Special Keys in
Edit Mode

Page Key Name What it Does

66 CTRL-B Backspace Moves the cursor left one space
66 -► Right-arrow Moves the cursor right one space
66 CTRL-P Up-arrow Moves the cursor up to the previous line
66 CTRL-N Down-arrow Moves the cursor down to the next line
66 REPT Repeat Repeats the previous key, as long as you hold it

down
68 CTRL-E End-line Moves the cursor to the end of a line
68 CTRL-A Start-line Moves the cursor to the beginning of a line
68 CTRL-V Next-page Moves the cursor forward one screenful of text
68 ESC V Previous-

page Moves the cursor back one screenful of text

Keys to Change the Text

Key Name What it Does

66 ◄- Rubout Erases the character to the left of the cursor
66 RETURN Return Moves the cursor down to a new line. Any text to

the right of the cursor is moved down with it
68 CTRL-D Delete Erases the character at the cursor
68 CTRL-K Kill Erases (kills) an entire line to the right of the

cursor
68 CTRL-0 Open-line Opens a new line at the cursor. Any text to the

right of the cursor is moved down one line

Keys to Finish Editing

Key Name What it Does

14 CTRL-G Stop Returns to Logo command mode without defining
any procedures

60 CTRL-C Define Returns to Logo command mode and defines all
procedures being edited

Index

“A, 231
Abelson, Harold, 2, 9, 55, 69, 74,

168, 174, 230, 281
Addition (see Arithmetic)
ADDLETTER, 228
ADDPICTURE, 231
ADDQUIZ, 198-201
ADJECTIVE, 259
Adjectives, 260
ADVERB, 259
Adverbs, 260
AGREE, 181
“AIDS, 307
Analytical approach, 88
AND, 192, 249, 275, 311
:ANGLE, 129-131
Angles, 33, 34

estimating, 84-86
as inputs, 129-131, 148
small, 34

Animals, drawing, 120
Appendices, 3
Apple Backpack: Humanized Pro¬

gramming in BASIC (Ka-
mis and Mitchell), 283

Apple II plus keyboard, 13, 14
Apple He keyboard, 14
Apple Logo, 2
Apple Logo (Abelson), 2, 9, 55,

69, 74
Apple Logo Language Disk, 6,

11-12
Apple Logo Procedures Disk,

287-299
Apple Logo Reference Manual,

306
Applesoft BASIC, 301
Arc procedures, 270-272
ARCL, 37, 94
ARCR, 37, 94
Arcs, 36, 37, 38, 39, 94

petals from, 98, 99
Arithmetic:

parentheses and, 177-178
with variables, 136

Arithmetic commands, 184, 310
ARMS, 112
Arrow keys, 13, 14, 17, 60, 63, 66,

67, 312

ARTICLE, 259
Articles, 258
Asterisk (*) for multiplication,

136, 310

B 52
BACK or BK, 18, 19, 23, 180, 309
Background color, 35
Backspaces, 66
BACKTALK, 181
Back-up copy, 73
Backward an entire screen, 68
Baseball field, drawing, 121

BASIC, 67
Applesoft, 301

Beginning of a line, 68
BE or BUTFIRST, 180, 184, 229,

278-279, 311
BIGBOX, 104-107
BK or BACK, 18, 19, 23, 180, 309
BL or BUTLAST, 180, 184, 311

Blank line, 179
BLOSSOM, 136
Blossoms, 116
BODY, 110
BOX, 57-65, 67
BOX DEFINED, 59, 61
BOX5, 124, 138
BOXES, 78-79

creating procedure, 288-289
Boxes procedures, 274—276
Brace, {, 191-192
Brackets, square, [], 14, 17, 83,

178-184, 201
Bugs, 5, 106, 108, 158

editing, 67
list of, 7
sources of, 217
turtle state, 108

Bulletin board, 29
BURY, 306
Burying packages of procedures,

305-306
BUTFIRST or BE, 180, 184, 229,

278-279, 311
BUTLAST or LB, 180, 184, 311

Butterfly, 38
BUTTONP, 241, 310

Index / 313

314 / Index

CAI (computer-assisted instruc¬
tion), 51, 202

CAPS LOCK, 14
Care and management of disks

and files, 301-308
Cartesian X and Y coordinate sys¬

tem, 44
Cartoon characters, 3-5
CATALOG, 70, 71, 72, 74, 310
CCIRCLE, 208-209, 272-274

creating procedure, 287-288
Centered circle, 96
CHANGE, 233
CHANGECOLOR, 242
CHAR, 311
Characters, 66

cartoon, 3-5
Chart of command keys, 241
CHECKGUESS, 195-196
CHOICES, 221
CHOOSELEVEL, 222
Circle procedures, 270-272
CIRCLEL, 37, 94
CIRCLER, 37, 94
Circles, 36-39, 94

centered, 96
five interlocking, 95
quarter, 36, 37, 38, 94, 97
two rows of, 96
using recursion, 93

CIRCLES, 36, 94
creating procedure, 287

“CIRCTOOLS, 307
CLEAN, 42, 309
CLEARSCREEN or CS, 18, 19,

23, 26, 42, 309
CLEARTEXT, 195, 310
Colon (see Dots)
Colors, 35
COMMAND, 226-228, 237-240
Command keys, chart of, 241
Command mode, 61, 63, 64, 67
Commands, 8, 16

arithmetic, 184, 310
comparison, 184
conditional, 3, 154, 157-158, 311
editing, 310
equals sign (=), 144-147, 311
filing, 310
input, 310
inputs to, 123
list, 311
list of, 82-83
miscellaneous, 311
number, 310
output, 310
posting turtle, 20
printing, 310
procedure control, 311

Commands (Cont.):
reference list of, 309-312
as single line, 192
special keys used in, 312
turtle, 20, 23-25, 309
typing, 15-17
variable, 311
word, 311

Comment procedure, 284-285
COMPARESCORES, 251
Comparison commands, 184
Computer, playing, 142, 158
Computer-assisted instruction

(CAI), 51, 202
Computer programs, writing, 57
Conditional, 140-141
Conditional commands, 3, 154,

157-158, 311
Cooperation, group, 33
Coordinate system, Cartesian X

and Y, 44
Coordinates, 206
Copy:

back-up, 73
hard, 73, 75

Copying:
files, 302-303
Logo work disks, 302

“COUNT, 197
Crash, 15
CRASH, 247
CRASHED?, 246-247, 249, 251-

253
Creative Publications, Inc., 8
CS or CLEARSCREEN, 18, 19,

23, 26, 42, 309
CTRL, 13, 14
CTRL-A, 68, 312
CTRL-B, 14, 17, 60, 63, 66, 67,

312
CTRL-C, 60, 61, 62, 63, 67, 68,

312
CTRL-D, 68, 312
CTRL-E, 68, 312
CTRL-F, 66
CTRL-G, 13, 14, 90, 129, 140,

151, 161, 192, 312
CTRL-K, 68, 312
CTRL-L or FULLSCREEN, 28,

29, 42, 43, 309, 312
CTRL-N, 66, 67, 312
CTRL-0, 68, 312
CTRL-P, 66, 67, 312
CTRL-Q, 201, 284
CTRL-RESET, 15
CTRL-S or SPLITSCREEN, 29,

42, 43, 65, 309, 312
CTRL-T or TEXTSCREEN, 23,

43, 65, 309, 312

Index / 315

CTRL-V, 68, 312
Cursor, 13, 14, 16, 66

function of, 67
keys to move, 312

“Curved slinky” design, 95

D, 285
Data, 177
Data processing, 177, 205
Debugging, 5
:DEC, 161
DEFINE, 230
Delete, 68
.DEPOSIT, 284, 311
Designs, 77-101

inputs that change the shapes
of, 129-131

inputs that change the sizes of,
123-128

made with POLY, 151
made with REPEAT, 86
made with squares, 80, 123-124
sample, 77
spinning, 130-131, 133
that grow, 138-143

Direction keys {see Arrow keys)
diSessa, Andrea, 168, 174
Disk drive, 11, 12, 70, 71
Disks:

caring for, 308
Logo work (see Logo work

disks)
LWAL Procedures {see LWAL

Procedures Disk)
DISTANCE, 208-209, 218, 276-

277
creating procedure, 289

“DISTANCE, 250
Division {see Arithmetic)
DOS 3.3 System Master, 301
Dots (:), 53, 124, 128, 187

{See also entries beginning with

:)
DRAWBOX, 252-253, 274-276
DRAWHAT, 113
Drawing animals, 120
Drawing baseball field, 121
Drawing flowers, 116-117
Drawing insects, 120
Drawing shapes, 30-34
Drawing stick-figure persons, 109-

115
Drawing trees, 120
Drawing trucks, 104-108
Drawing vehicles, 121
Drawings, 25, 103-121

tips for, 103
DRAWLIST, 227

DRAWTARGET, 210, 211, 216,

217
DRAWTRACK, 246, 249, 250, 253

DRIVE, 237-239, 245
Driving the turtle, 237-239
“DTARGET, 218-219

E, 52, 226, 228, 230, 232-233, 285
EDIT or ED, 59, 64, 68-69, 310
Edit mode, 59-63, 64, 67, 68

special keys in, 312
Editing:

basics of, 66
keys to finish, 312
operations involved in, 67

Editing bugs, 67
Editing commands, 310
Editor, Logo screen, 66
Empty lists, 179, 201
Empty words, 178, 238, 239
END, 58-60, 68, 310
End of a line, 68
EPSON MX-80 printer, 75 283,

285
Equals sign (=) command, 144-

147, 311
ER or ERASE, 59, 65, 304, 310
ERALL, 47, 52, 65, 66, 72, 73,

310
ERASE or ER, 59, 65, 304, 310
ERASEFILE, 70, 72, 310
Erasing procedures, 303-305
Error message, 17
Errors:

editing, 67
typing, 7, 18, 64, 286

ESC, 66
ESC-V, 68, 312
Estimators, visual, 88
Experience, Logo learning, 29
EXPLODE, 214-215, 251
Explorations, 6, 14, 29

F, 52, 226, 228, 230, 232-233
Faces, symmetrical, 118-119
“FALSE, 144, 145, 184
ED or FORWARD, 18, 19, 23, 309

FENCE, 40, 309
File names, 70, 71, 72
Files, 70-74

care and management of, 301-
308

copying, 302-303
printed, 73
saving procedures in, 303-305

startup, 307
updating, 303

316 / Index

Filing, 73-74
Filing commands, 310
Filing procedures, 71-74
FINISH, 201
FINISHED?, 246-249
FIRST, 180, 184, 228-229, 311
FLAGWAVING, 251
FLOWER, 136
FLOWERDESIGN, 137
Flowers, 99

assembling, 117
drawing, 116-117

FOG, 266
FORWARD or FD, 18, 19, 23, 309
Forward an entire screen, 68
FULLSCREEN, CTRL-L, 28, 29,

42, 43, 309, 312

G, 285
Game:

interactive, 205-223
racetrack, 237, 243-254

Game paddles, 237, 241-243
GARDEN, 136-137
GETANGLE, 233
GETANSWER, 200
GETGUESS, 195-198
GETNUMBERS, 200
GETSIZE, 233
GETTOTAL, 198-199
GIVEADVICE, 220
GIVEPROBLEM, 200
Global variables, 213
GRAFTRAX chips, 283
Graphics screen, full, 28
Grappler interface board, 75
Grappler interface card, 283, 285
Greater than (>) command, 58-

59, 311
Group cooperation, 33
GROW, 191
Grow, designs that, 138-143
GROWHOUSES, 139
Growing spiral, 100

GROWSPINSQUARES or
GRSPSQ, 148-149, 159

GROWSQUARES, 139-143, 159
GRSPSQ or GROWSPIN¬

SQUARES, 148-149, 159
:GUESS, 196
GUESSNUMBER, 193-197

creating procedure, 292

HALT, 241
HAMLET, 265
Hard copy, 73, 75
HAT, 113-114

HEAD, 113-114
HEADING, 44, 143-146, 154, 309
HELP, 219-220
Helper’s hints, 6
HIDETURTLE or HT, 39, 40, 309
HIT, 213-215
HOME, 42, 44, 309
Horizontal position, 206
HOUSE, 134-135
HOUSES, 135, 138
HOW FAR?, 49, 50
“HSTART, 210
HT or HIDETURTLE, 39, 40, 309
“HTARGET, 218-219

Ideas, 6, 17
IF command, 140-141, 144-147,

311
IFFALSE or IFF, 200, 212, 311
IFTRUE or IFT, 200, 212, 311
INBOX?, 252-253, 274-276
:INC, 161
Incrementing, 212
Information, kinds of, 177
Initials, drawing, 32
Input commands, 310
Input numbers, 18, 23
Inputs, 3, 17

angles as, 129-131, 148
to commands, 123
negative, in parentheses, 168
inside parentheses, 179-180
procedures with two or more,

131-133
single-key, 225
size, 148
that change the shapes of de¬

signs, 129-131
that change the sizes of designs,

123-128
Insects, drawing, 120
Inspirals, 164-167
INSTANT, 55, 230
INSTRUCTIONS, 195-196, 220
Interactive game, 205-223
Interactive Logo procedures, 177
Interactive programming, 205

Jargon, 67
Joint projects, 206
Journal {see Logo journal)

Kamins, Scot, 283
KEY, 277
Keyboard, 13, 14
KEYP, 310

I Index / 317

I

i

j

i

Keys:
arrow {see Arrow keys)
to change text, 312
command, chart of, 241
to finish editing, 312
to move cursor, 312
repeating, 14, 66
special: in edit mode, 312

used in Logo command, 312

Kill line, 68
Krell logo, 2

L, 52, 226, 228, 230, 232-233
LARC, 36, 37, 38, 39, 94, 97, 272
LAST, 180, 184, 311
LCIRCLE, 36, 37, 38, 94
LCP, 270
Learning experience, Logo, 29
Learning With Apple Logo:

disk for use with {see LWAL
Procedures Disk)

how to use the book, 2
what’s in the book, 2-3
who the book is for, 1-2

LEFT or LT, 18, 19, 23, 309
Left arrow key (^), 13, 14, 17,

60, 63, 66, 67, 312
LEFTLEG, 110-111
LEGS, 110-111
Less than (<) command, 311
Line:

beginning of a, 68
blank, 179
create new, 68
end of a, 68
kill entire, 68
new, 66
open new, 68
previous, 66
recursion, 129

List(s), 178-184
of bugs, 7
of commands, 82-83
empty, 179, 201
with only one word, versus

word, 229
reference, of commands, 309-

312
List commands, 311
List-processing procedures, 229
LOAD, 36, 47, 52, 70, 72, 73, 310
Local variables, 213
Logo, 1

defined, 8-9
loading, 11-12
versions of, 2
{See also Apple Logo entries)

.LOGO, 71

LOGO commands:
special keys used in, 312
typing, 15-17

Logo for the Apple II (Abelson), 9
Logo journal, 6-7, 23, 152
Logo learning experience, 29
Logo procedures, interactive, 177
Logo screen editor, 66
Logo syntax, 18
Logo turtle {see Turtle)
Logo wizard, 4
Logo work disks, 2, 6, 57, 70, 72,

73
copying, 302
initializing, 71, 301

Long-term memory, 73
Looping, recursion versus, 94
“LOWSCORE, 251
LT or LEFT, 18, 19, 23, 309
LWAL Procedures Disk, 7, 36,

47, 205
creating your own, 286-299
obtaining, 8
procedures in, 286

MAKE, 128, 155-156, 184-191,
210, 228, 311

Management and care of disks and
files, 301-308

Math quiz programs, 197-202
Mathematical approach, 88
MATHQUIZ, 197-199

creating procedure, 292-293
Memory, 69, 73
Message:

error, 17
welcome, 15

‘‘MESSAGE, 184-190
Micro worlds, 47
Mindstorms: Children, Comput¬

ers, and Powerful Ideas
(Papert), 9, 47

Mirror image shapes, 86-87
Mirror image snake, 101
MIRRORSNAKE, 101
MISS, 213, 216, 219, 222
Mistakes {see Bugs)
MOVEBACK, 106-107
MOVEOVER, 106-107, 135-136
Multiplication, asterisk (*) for,

136, 310
{See also Arithmetic)

Names:
file, 70, 71, 72
of objects, versus objects, 230
of variables, 155, 184
words as, 178

318 / Index

Negative inputs in parentheses,
168

Negative values, 206-207
New line, 66
“NEWPART, 191
Next line, 66
NOT, 311
Noun, 259
Nouns, 258
“NUMl, 282
:NUMBER, 172-174, 196
Number commands, 310
NUMBER?, 310
Numbers, 177-178

comparing, 177-178
input, 18, 23

Objects, names of objects versus,
230

OLDY, 248-250
Olympic Games symbol, 95
OP or OUTPUT, 278-281, 311
Open new line, 68
Operation, 184
OR, 192, 275, 311
Orange Micro Incorporated, 75,

283-284
OUTBOX?, 252-253, 274-276
Output, term, 182, 184
OUTPUT or OP, 278-281, 311
Output commands, 310

PACKAGE, 304, 306
Packages, 74

of procedures, burying, 305-306
PADDLE, 241-243
PADDLECONTROL, 241-242
Paddles, game, 237, 241-243
PADDLESPI, 243
Papert, Seymour, 9, 47
Parentheses, 148

arithmetic and, 177-178
inputs inside, 179-180
making lines easier to read, 212
necessary, 213, 277
negative inputs in, 168
around SENTENCE, 258

PD or PENDOWN, 24, 25, 54,
309

PDRIVE, 242, 243
PEN, 273, 309
Pen color, 35
PENDOWN or PD, 24, 25, 54,

309
PENREVERSE, 215-216, 222
PENUPor PU, 24, 25, 54, 113,

309
Permanent memory, 69, 73

PERSON, 109-115
Personal permanent memory, 69
PETAL, 99, 116, 136
Petals from arcs, 98, 99
Pi (tt), 270
PICK, 278-281
PICKRANDOM, 258, 278, 281

creating procedure, 289-290
:PICT, 232
Pictures:

printing, 75
redrawing, 229-230

Pitfalls, 5
Plans, superprocedures as, 115
Playing computer, 142, 158
Playing turtle, 30-31, 33, 51
PO, 65, 74, 310
POALL, 65, 74, 310
POEMS, 264
Poet, 257-276
POET, 263-266

creating procedure, 298-299
POLY, 3, 151-171

designs made with, 151
stopping, 154-158

Poly steps, two different, 168
POLYl, 155-157
Polygons, 87

recursion for making, 92-93
POLYSCI, 170-171
Polyspirals, 159-164
POLYTRl, 169-170
Positive values, 206
Posting turtle commands, 20
POTS or PRINTOUT TITLES,

65, 67, 70, 72, 74, 310
POWER light, 12
Powerful ideas, 6, 17
PR or PRINT, 17, 74, 75, 310
PREPOSITION, 263
Prepositions, 263
Previous line, 66
Primitives, 5, 144
PRINT or PR, 17, 74, 75, 310
PRINT CHAR 17, 75, 284
Printed files, 73
Printer, 74-75

EPSON MX-80, 75, 283, 285
Silentype, 75, 284-285

•PRINTER, 310
•PRINTER 0, 74, 75
•PRINTER 1, 74, 75, 284
Printing commands, 310
Printing pictures, 75
Printing procedures, 74
PRINTKEYS, 277
PRINTLETTER, 277
PRINTOUT TITLES or POTS,

65, 67, 70, 72, 74, 310

Index / 319

Printouts, 57, 65, 74-75
PRINTSCREEN or PS, 75, 283-

285
creating procedure, 290-292

PRINTSCREEN.BIG or PSB, 75,
285

PRINTSCREEN.BIG.E or PSBE,
75, 285

PRINTSCREEN.E or PSE, 75,
285

PRINTSCREEN.S, 75
Private variables, 213
Procedure control commands, 311
Procedure tree, 195, 209
Procedures, 2, 5, 8, 57-74, 77-79

burying packages of, 305-306
comment, 284-285
erasing, 303-305
filing, 71-74
with inputs, 3
inputs to, 123
list-processing, 229
in LWAL Procedures Disk, 286
printing, 74
saving, in files, 303-305
tool, 7, 269-285
with two or more inputs, 131-

133
writing, 103
{See also Subprocedures; Su¬

perprocedures)
Procedures Disk (see LWAL Pro¬

cedures Disk)
Programming, 57

interactive, 205
top-down, 103

Projects, joint, 206
Prompt, 15, 58
PS or PRINTSCREEN, 75, 283-

285
creating procedure, 290-292

PSB or PRINTSCREEN.BIG, 75,
285

PSBE or PRINTSCREEN.BIG.E,

75, 285
PSE or PRINTSCREEN.E, 75,

285
PU or PENUP, 24, 25, 54, 113,

309
Public variables, 213
Pythagorean Theorem, 276

Q, 231, 234
QD (see QUICKDRAW or QD)
Quarter circles, 36, 37, 38, 94, 97
Question mark (?) prompt, 15, 70
QUICKDRAW or QD, 2, 3, 7, 47,

52-53, 55

QUICKDRAW or QD (Cont.):

changing, 230-234
creating procedure, 295-296

QUICKDRAW activity, 225-234
Quit command, 231, 234
Quiz programs, 191-193

math, 197-202
Quote (‘‘), 36, 59, 64, 71, 128, 178,

187, 238
(See also entries beginning

with “)

R, 52, 226, 228, 230, 232-233, 285
RACE, 245-247

creating procedure, 296-297
RACE variations, 250-254
RACECAR, 246
Racetrack, turtle, 243-245
Racetrack game, 237, 243-254
Radius, 36, 37, 38, 94
RANDOM, 195-196, 210, 310
Random shapes, repeating, 54
RARC, 36, 37, 38, 39, 94, 97, 98,

272
RAY, 100
Rays, star made from, 101
RC or READCHAR, 277, 310
RCIRCLE, 36, 37, 38, 94
RCP, 270
RD or REDRAW, 53, 55, 227,

229-230
READCHAR or RC, 277, 310
READKEY, 225, 238, 277

creating procedure, 289
READLIST or RL, 180-183, 201,

221, 228, 281-282, 310
READNUMBER, 194-196, 208-

209, 281-283
creating procedure, 290

RECOMMAND, 229-230
Rectangles, 32, 132-133
Recursion, 80, 88-95, 129

circles using, 93
looping versus, 94
for making stars and polygons,

92-93
Recursion line, 129
REDRAW or RD, 53, 55, 227,

229-230
Redrawing pictures, 229-230
Reference list of commands, 309-

312
Regular shapes, 81
REMAINDER, 242, 310
REPEAT, 80, 82-88, 311

designs made with, 86
Repeating keys, 14, 66
Repeating random shapes, 54

320 / Index

KEPT, 14, 66, 67, 312
RESET, 14, 15, 312
RESTART, 216, 245
Retracing steps, 100
RETURN, 12, 13, 14, 16, 17, 18,

19, 43, 47, 66, 67, 221, 312
Reverse screen, 75
Reversed slash mark (\), 201
RIGHT or RT, 18, 19, 23, 48-49,

309
Right arrow key (—>), 14, 17, 60,

63, 66, 67, 312
Right/left symmetry, 110, 111
RIGHTLEG, 110-111
RL or READLIST, 180-183, 201,

221, 228, 281-282, 310
Robots, 5
Rotation, turtle, 29
RT or RIGHT, 18, 19, 23, 48-49,

309
“RTARGET, 217, 218

SAVE, 57, 64, 70, 72, 108, 310
Saving procedures in files, 303-

305
SCISSORS, 170
Screen, 12, 15, 16, 18, 19

backward an entire, 68
forward an entire, 68
full (see FULLSCREEN)

^ reverse, 75
split (see SPLITSCREEN)
X and Y coordinates on, 206

Screen editor, Logo, 66
SE or SENTENCE, 179-183, 228,

258-262, 311
Semicircles, 98
Semicolon (;) command, 284
SENTENCE or SE, 179-183, 228,

258-262, 311
Sentence patterns, 258-262
SETBG, 35, 309
SETBG 6, 211
SETHEADING or SETH, 44,

207, 309
SETPC, 35, 231, 309
SETPEN, 309
SETPOS, 44, 206-207, 274-275,

309
SETSCORE, 251
SETSTART, 246, 250
SETUP, 242
SETX, 44, 208, 274-275, 309
SETY, 44, 208, 274-275, 309
Shapes;

drawing, 30-34
mirror image, 86-87
random, repeating, 54

Shapes (Cont.y.

regular, 81
state transparent, 115

Shared permanent memory, 69
SHIFT, 13, 14, 17, 83
SHIFT-’, 14
SHIFT-/, 13
SHIFT-1, 13
SHlFT-2, 14, 36
SHIFT-M, 14, 17, 83
SHIFT-N, 14, 17, 83
SHOOT, 2, 3, 7, 47-51, 208-209,

211-214
creating procedure, 294-295

SHOOT game, 205-223
changing, 213-223

SHOOT game program, 209
Short-term memory, 73
“SHOT, 219
“SHOTANGLE, 219
“SHOTNUMBER, 210, 212
SHOWNP, 273, 309
SHOWTURTLE or ST, 39, 40,

309
Silentype printer, 75, 284-285
SILLY, 90
SILLYONE, 91
SILLYTWO, 91
Single-key inputs, 225
SIZE, 128
:SIZE, 128
“SIZE, 125-128
Size, starting, 139
Size input, 148
“Slinky” design, 95
SMALLBOX, 104-107
SNAKE, 100, 101
Snake, mirror image, 101
Snake design, 97
Space, 19, 24, 53, 59, 71, 178, 179,

207
backspace, 66

SPACE BAR, 14, 67
SPEAK, 184
Spinning designs, 130-131, 133
SPINSQUARES, 129
SPINSQUARES2, 133, 143
SP1NSQUARES3, 143, 145, 147
Spiral, 39

growing, 100
SPIRO, 172-174
Spirolaterals, 172-174

closed and open, 174
SPLITSCREEN or CTRL-S, 29,

42,43,65,309,312
Splitscreen mode, 43
Sprites, 237
SQRT, 310
SQUARE, 78

Index / 321

Square brackets, [], 14, 17, 83,
178-184, 201

Squares, 30, 32
designs made with, 80, 123-124

ST or SHOWTURTLE, 39, 40,
309

STAR, 79
Stars, 77, 130, 131

five-pointed, 84, 88
made from rays, 101
made with REPEAT, 87
recursion for making, 92-93
variable-sized, 125

START, 48, 155, 209-211, 231
STARTDATA, 210
STARTGAME, 210, 211, 218
Starting size, 139
STARTTURTLE, 210, 211, 213
Startup files, 307
State transparent shapes, 115
STEM, 136
Stick-figure persons, drawing,

109-115
STOP, 192, 226, 240, 249
STOP rule, 140-148

improving, 154-158
position of, 157-158

Strategies, learning, 29
Subprocedures, 64, 77, 79-80, 209

intuitive approach to using, 104
subprocedure of itself, 80
with variables, 133-138

Subtraction (see Arithmetic)
Sun designs, 96, 97
Superprocedures, 109, 209

as plans, 115
SWITCHPOLY, 169
Symmetrical faces, 118-119
Symmetry, 115

right/left, 110, 111
Syntax, Logo, 18
System crash, 15

TALK, 181-182
Terrapin Logo, 2
TEST, 200, 212, 311
Text, 66

keys to change, 312
TEXTSCREEN or CTRL-T, 23,

43, 65, 309, 312
Textscreen mode, 43
THING, 231-232, 311
THROW, 311
THROW ‘TOPLEVEL, 226, 249
TI computer, 6
TI Logo (Abelson), 9
:T1ME, 246
Titles, 65

TO, 58, 64, 310
Tool procedures, 7, 269-285
Top-down programming, 103
Total Turtle Trip Theorem, 88,

153-154
TOWARDS, 218
Trees, drawing, 120
Triangles, 81-82

variable-sized, 125
TRUCK, 105, 107
Trucks, drawing, 104-108
‘TRUE, 144, 145, 147, 184
Turtle, 2, 4

animating the, 237-243
driving the, 237-239
moving the, 18
playing, 30-31, 33, 51
turning the, 18

Turtle commands, 309
basic, 23-25
posting, 20

Turtle Geometry (Abelson and
diSessa), 168, 174

Turtle racetrack, 243-245
Turtle rotation, 29
Turtle state bug, 108
TYPE, 195, 310
Typing errors, 7, 18, 64, 286
Typing Logo commands, 15-17

UNBURY, 306
Updating, 212
Updating files, 303

Values:
negative, 206-207
positive, 206
of variables (see Variables, val¬

ues of)
Variable commands, 311
Variables, 3, 123-149

arithmetic with, 136
defined, 123
global, 213
local, 213
names of, 155, 184
private, 213
public, 213
subprocedures with, 133-138
using, 128
values of, 155, 184-190

changing, 188-190
iVARIABLES, 53, 124, 128, 187

(See also entries beginning
with :)

“VARIABLES, 36, 59, 64, 71,
128, 178, 187, 238

322 / Index

“VARIABLES (Cont.):

{See also entries beginning
with “)

Vehicles, drawing, 121
VERB, 259
Verbs, 258
Vertical position, 206
Visual estimators, 88

WAIT, 208, 311
Waite, Mitchell, 283
WAITFORUSER, 201, 220-221
Wave pattern, 38
Welcome message, 15
WHEELS, 104-107
WINDOW, 41, 309
Window mode, 41
Windows, rotated, 77
Wizard, Logo, 4
WORD, 179, 285, 311
Word commands, 311
Words, 178

empty, 178, 238, 239
list with only one word versus,

229

Work disks (see Logo work disks)
Working memory, 69, 73
WRAP, 40-41, 309
Wrap around, 27, 28, 38
Wrap mode, 41
Writing computer programs, 57
Writing procedures, 103

X coordinates, 206
:X1, 276-277
XCOR, 44, 276-277, 309
“XSTART, 210
“XTARGET, 210

Y coordinates, 206
:Y1, 276-277
YCOR, 44, 248-249, 276-277, 309
“YSTART, 210
“YTARGET, 210

ZAP, 240

Order your

Learning With Logo
and

Learning With Apple Logo
Procedures Disks

Be sure to order the disk that goes with your version
of Logo. The Learning With Logo Procedures Disk can
be used with Terrapin and Krell versions of Logo. The
Learning With Apple Logo Procedures Disk can be
used with Apple Logo, distributed by Apple Computer
Company, Inc.

Be sure to specify
catalog numbers:_^__

90313-LEARNING WITH LOGO PROCEDURES DISK

90314-LEARNING WITH APPLE LOGO PROCEDURES DISK

To order a procedures disk for Terrapin/Krell Logo or Apple Logo, send
your check for $15.95 per disk to Creative Publications, P.O. Box 10328,
Palo Alto, CA 94303. If you prefer to order by Visa or MasterCard® in¬
clude your signature, card number, and expiration date.

Computers
General Interest

Learning
With Apple Logcr
by
Daniel WiUt

Learning With Apple Logo offers a
thorough introduction to the fascinating
uses of Logo, the educational language
for children as well as adults. As reward¬
ing for beginners as it is for more ex¬
perienced programmers, this book teaches
the fundamentals of Logo programming
through projects that reveal the powerful
ideas underlying the language developed
at MIT.

The early chapters, written with 10- to
13-year-old readers in mind, start from
the very beginning with an easy-to-follow
guide to the Logo system, commands for
controlling the Logo turtle, and instruc¬
tions for writing new Logo commands.
Dozens of suggested activities lead young
learners to create their own unique pro¬
jects, and special sections highlight
powerful ideas and warn against common
pitfalls.

Building on these basics, more involved
projects including interactive games, quiz
programs, and language activities with
words and sentences are introduced as the
book goes on. The detailed information
on poem-generating programs, animation,
and special tool procedures will continue
to challenge more advanced learners as
their knowledge increases.

While most of Learning With Apple
Logo can be read and used by children,
specific “helper’s hints’’ throughout the
book are especially designed for teachers
and parents who want to help children
learn Logo. In these sections, the author
offers more detailed information and
many helpful teaching suggestions drawn
from his broad experience as an educator
and Logo researcher.

McGraw-Hill Book Company
Serving the Need for Knowledge
1221 Avenue of the Americas
New York, NY 10020

Comprehensive appendices tell how to
use the book with Terrapin and Krell
Logo and T1 Logo. A disk of procedures
used in the book is also available. (Order¬
ing information is found inside.)

Learning With Apple Logo is designed
to be used with Logo for the Apple Logo
as marketed by Apple Computer Inc.
Users of Logo for the Apple II sold by
Terrapin Inc. and Krell Software should
ask for the Learning With Logo edition.

Photo by Jock Gill.

Daniel H. Watt, an editor with BYTE and Popular
Computing magazines, has been an elementary
school teacher, curriculum developer, and teacher
trainer. For five years he was a researcher with the
MIT Logo Group, teaching Logo to children and
teachers and conducting research about what
students learn when they program computers.

|VROMAN’S

Ql m
ISBN □-□7-0bfl571-l

